
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
3.2.7
![**Problem Statement**
Find the unit tangent vector to the curve defined by
\[
\vec{r}(t) = \langle 5t, -5t, \sqrt{1 - t^2} \rangle
\]
at \( t = 0 \).
**Solution:**
To find the unit tangent vector, we need to determine the derivative of the vector function \(\vec{r}(t)\) and then evaluate it at \( t = 0 \). Then, we will normalize this vector to obtain the unit tangent vector.
1. **Differentiate \(\vec{r}(t)\):**
\[
\vec{r}'(t) = \left\langle \frac{d}{dt}(5t), \frac{d}{dt}(-5t), \frac{d}{dt}\left(\sqrt{1 - t^2}\right) \right\rangle
\]
\[
= \langle 5, -5, \frac{-t}{\sqrt{1-t^2}} \rangle
\]
2. **Evaluate \(\vec{r}'(t)\) at \( t = 0 \):**
\[
\vec{r}'(0) = \langle 5, -5, 0 \rangle
\]
3. **Find the magnitude of \(\vec{r}'(0)\):**
\[
\|\vec{r}'(0)\| = \sqrt{5^2 + (-5)^2 + 0^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2}
\]
4. **Normalize \(\vec{r}'(0)\) to find the unit tangent vector \(\vec{T}(0)\):**
\[
\vec{T}(0) = \frac{\vec{r}'(0)}{\|\vec{r}'(0)\|} = \frac{\langle 5, -5, 0 \rangle}{5\sqrt{2}} = \left\langle \frac{5}{5\sqrt{2}}, \frac{-5}{5\sqrt{2}}, 0 \right\rangle
\]
\[
= \left\langle \frac{1}{](https://content.bartleby.com/qna-images/question/6b463452-b960-4b00-bce0-3a69d9f467e2/6e7ac726-71b9-45ff-a143-54945e182347/df623q_thumbnail.png)
Transcribed Image Text:**Problem Statement**
Find the unit tangent vector to the curve defined by
\[
\vec{r}(t) = \langle 5t, -5t, \sqrt{1 - t^2} \rangle
\]
at \( t = 0 \).
**Solution:**
To find the unit tangent vector, we need to determine the derivative of the vector function \(\vec{r}(t)\) and then evaluate it at \( t = 0 \). Then, we will normalize this vector to obtain the unit tangent vector.
1. **Differentiate \(\vec{r}(t)\):**
\[
\vec{r}'(t) = \left\langle \frac{d}{dt}(5t), \frac{d}{dt}(-5t), \frac{d}{dt}\left(\sqrt{1 - t^2}\right) \right\rangle
\]
\[
= \langle 5, -5, \frac{-t}{\sqrt{1-t^2}} \rangle
\]
2. **Evaluate \(\vec{r}'(t)\) at \( t = 0 \):**
\[
\vec{r}'(0) = \langle 5, -5, 0 \rangle
\]
3. **Find the magnitude of \(\vec{r}'(0)\):**
\[
\|\vec{r}'(0)\| = \sqrt{5^2 + (-5)^2 + 0^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2}
\]
4. **Normalize \(\vec{r}'(0)\) to find the unit tangent vector \(\vec{T}(0)\):**
\[
\vec{T}(0) = \frac{\vec{r}'(0)}{\|\vec{r}'(0)\|} = \frac{\langle 5, -5, 0 \rangle}{5\sqrt{2}} = \left\langle \frac{5}{5\sqrt{2}}, \frac{-5}{5\sqrt{2}}, 0 \right\rangle
\]
\[
= \left\langle \frac{1}{
Expert Solution

arrow_forward
Step 1
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Similar questions
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning