College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
Find the ranges shown for the projectiles in the figure for an initial speed of 50 m/s at the given initial angles.
Part A: What is the range, in meters, for the projectile with the angle of 15°?
Part B: What is the range, in meters, for the projectile with the angle of 45°?
Part C: What is the range, in meters, for the projectile with the angle of 75°?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Based on the measured angles of the marble launcher, calculate the initial horizontal and vertical components of the marble’s velocity for each angle, assuming the velocity vector has the same magnitude as you calculated from Part I (4.31 m/s). angle 1: θ = 15° -->initial height 0.027m, horizontal distance 0.145m angle 2: θ = 45° -->initial height 0.027m, horizontal distance 0.209m angle 3: θ = 70° --> initial height 0.027m, horizontal distance 0.118marrow_forwardWater leaves a fireman’s hose (held near the ground) with an initial velocity v0 = 11.5 m/s at an angle θ = 30.5° above horizontal. Assume the water acts as a projectile that moves without air resistance. Use a Cartesian coordinate system with the origin at the hose nozzle position, as shown. 1). Using v0, θ, and g, write an expression for the time, tmax, the water travels to reach its maximum vertical height. 2)arrow_forwardConsider a projectile being launched with an initial speed of 43 m/s at a variety of initial angles. Refer to the figure. What is the range, in meters, of the projectile if it is launched at an angle of θ1 = 79.7°? What is the range, in meters, of the projectile if it is launched at an angle of θ2 = 40.5°? What is the range, in meters, of the projectile if it is launched at an angle of θ3 = 90 − 79.7°, the complement of θ1?arrow_forward
- Make a prediction regarding what launch angle will produce the maximum horizontal range for a projectile launched from level ground and landing back on level ground. Provide reasoning to support your hypothesis.arrow_forwardA projectile is fired with initial speed 150 m/s and an angle of elevation 45° from a position 10 m above ground level. Where does the projectile hit the ground and with what speed? Solution If we place the origin at ground level, then the initial position of the projectile is (0, 10) and so we need to adjust the parametric equations of the trajectory by adding 10 to the expression for y. With v0 = 150 m/s, ? = 45°, and g = 9.8 m/s2, we have x = 150 cos ? 4 t = y = 10 + 150 sin ? 4 t − 1 2 (9.8)t2 = . Impact occurs when y = 0, that is 4.9t2 − 75 2 t − 10 = 0. Solving this quadratic equation (and using only the positive value of t), we get the following. (Round your answer to two decimal places.) t = 75 2 + 11,250 + 196 9.8 ≈ Then x ≈ 75 2 (21.74) ≈ (rounded to the nearest whole number), so the projectile hits the ground about…arrow_forwardMax Distance Worksheet. What angle 0 will result in the height тах range? Range In this worksheet you'll work out the angle which maximizes the range of a projectile.arrow_forward
- t path A in the figure. A city block is asquare of l = 105 m on each side. What is the total distance traveled on path A in meters? What is the magnitude of the displacement in meters? What is the angle of displacement, in degrees, measured east of north?arrow_forwardBased on the measured angles of the marble launcher, calculate the initial horizontal and vertical components of the marble’s velocity for each angle, assuming the velocity vector has the same magnitude as you calculated from Part I (18.54 m/s). angle 1: θ = 15° -->initial height 0.027m, horizontal distance 0.145m angle 2: θ = 45° -->initial height 0.027m, horizontal distance 0.209m angle 3: θ = 70° --> initial height 0.027m, horizontal distance 0.118marrow_forwardA cannonball is launched diagonally with an initial horizontal velocity of 50.0m/s and an initial vertical velocity of 30.0Om/s. Label the hypotenuse, opposite side and adjacent side, and determine all unknowns. initial velocity: m/s initial horizontal velocity: m/s initial vertical velocity: m/s At what angle (0) was the cannonball launched?arrow_forward
- This problem will involve deriving a formula or two for a projectile launched from one height and angle and landing at a different height on Earth. Begin with a projectile launched at angle 0 above horizontal from a height y₁ with initial velocity Vo. The projectile lands at a point with height y₂. These are the given quantities: vo, 0, y₁, y2 and g. Construct formulae for each of the following, as. a function of given quantities the horizontal distance traveled. the maximum height reached. the time taken. the angle of impact. (find the final velocity components first).arrow_forwardIn my homework, I am asked to derive an equation for V0. The homework question is as follows: A howitzer fires a shell with a velocity of v0 at an angle Θ above the horizontal. The howitzer is on a plateau and the shell lands down in the plain below, a vertical distance d below the plateau and a horizontal distance L from where the howitzer is. Derive an expression for the magnitude of the initial velocity, V0, as a function of d, L, g, and Θ. Any help would be appreciated as I have worked on this problem for quite a while and I am not making progress.arrow_forwardProjectile #1 is launched at t%=DOs at position (0,0) with an initial x-velocity of 5m/s and y-velocity of 10m/s. Projectile #2 is launched 1s after projectile #1 from an initlal position of (1,1) with an x-velocity of 10m/s. Find the following: The position that the 2 projectiles collide at, the time it takes to collide, and the Initial velocity of projectile #2 Including the launch angle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON