College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Find the radius of curvature (in m) of the path of a 0.220 MeV proton moving perpendicularly to the 1.25 T field of a cyclotron.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How strong a magnetic field (B, in Tesla) is needed to keep an electron moving at a speed of (1/100)c in a circular path of radius 1m?arrow_forwardTwo infinitely-long conductors parallel to the z-axis pass through the points (0,±a).arrow_forwardAt the Fermilab accelerator in Weston, Illinois, singly charged ions with momentum 3.3 × 10−16 kg m/s are held in a circular orbit of radius 1.00 km by an upward magnetic field. What B field must be used to maintain the ions in this orbit? (qion = 1.60 × 10−19 C)arrow_forward
- An electron moves in an uniform magnetic field (with the orbital plane perpendicular to the field). If the cylotron radius of the electron is 60 cm and it's kinetic energy is 9.6 keV, find the electron's speed, the magnitude of the magnetic field, the cyclotron frequency, and the period of the motion. Use me=9.11×10−31me=9.11×10-31 kg, e=1.6×10−19e=1.6×10-19 C, and 1 T = 104 G. The speed, v = Units Correct . The magnetic field, B = Units . The cyclotron frequency, f = Units Correct . The period, T = Units Correct .arrow_forwardSuppose a cyclotron is operated at an oscillator frequency of 11.2 MHz and has a dee radius 41.9 cm. Estimate the total path length traveled by a deuteron in the cyclotron during the (entire) acceleration process. Assume that the accelerating potential between the dees is 60.4 kV. The deuteron mass is m = 3.34 × 10-27 kg.arrow_forwardIn an oil-drop experiment similar to Millikan’s, an oil droplet is suspended between two parallel, charged plates. Calculate the magnitude of the charge on the oil droplet if the radius of the oil drop is 4.2 x 10^-6 m, the density of the oil is 7.8 x 10^-2 g/m^3, the distance between the plates is 2.0 cm, and the potential difference between the plates is 99 V.arrow_forward
- A constant electric field accelerates a proton from rest through a distance of 1.20 m to a speed of 1.53 ✕ 105 m/s. The mass and charge of a proton are mp = 1.67 ✕ 10−27 kg and qp = e = 1.60 ✕ 10−19 C.) (a) Find the change in the proton's kinetic energy (in J). J (b)Find the change in the system's electric potential energy (in J). J (c) Calculate the magnitude of the electric field (in N/C). N/Carrow_forwardA cyclotron is a machine that can be used to accelerate charged particles to achieve large kinetic energies. The resulting beams of highly energetic particles then can be used for many medical applications, including Proton Therapy (a more precise form of "radiation" used in the treatment of some cancers). A description of the cyclotron can be found in section 19.3 of the text. If a proton (of mass 1.673x10-27kg) is accelerated to its maximum velocity inside a dee with radius 2.08cm (this is the radius you would use for the "r" term in the centripetal acceleration), and if the magnetic field has a magnitude of 2.44x10-2T, what is the resulting velocity of the proton in units of km/s (kilometer per second)?arrow_forwardA 40.4-MeV proton moves in the horizontal plane in a region of vertically-directed magnetic field. Find the magnetic field magnitude if the proton experiences a 55.4 pN magnetic force.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON