Find the product Z₁Z2 and the quotient Z₁ = 10(cos(110°) + i sin(110°)), Z1Z2 = Z1 Z2 Z1 Express your answers in polar form. Z2 Z₂ = 2(cos(20°) + i sin(20°)) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Find the product \( z_1z_2 \) and the quotient \( \frac{z_1}{z_2} \). Express your answers in polar form.

Given:

\[ z_1 = 10(\cos(110^\circ) + i \sin(110^\circ)) \]

\[ z_2 = 2(\cos(20^\circ) + i \sin(20^\circ)) \]

**Solution:**

\[ z_1z_2 = \_\_\_\_ \]

\[ \frac{z_1}{z_2} = \_\_\_\_ \]

**Explanation:**

In polar form, the complex number \( z = r(\cos \theta + i \sin \theta) \) can be treated using the modulus \( r \) and argument \( \theta \).

For the product \( z_1z_2 \), multiply the moduli and add the arguments:

\[ z_1z_2 = (10 \times 2)\left(\cos(110^\circ + 20^\circ) + i \sin(110^\circ + 20^\circ)\right) = 20(\cos(130^\circ) + i \sin(130^\circ)) \]

For the quotient \( \frac{z_1}{z_2} \), divide the moduli and subtract the arguments:

\[ \frac{z_1}{z_2} = \left(\frac{10}{2}\right)\left(\cos(110^\circ - 20^\circ) + i \sin(110^\circ - 20^\circ)\right) = 5(\cos(90^\circ) + i \sin(90^\circ)) \]

\( \cos(90^\circ) = 0 \) and \( \sin(90^\circ) = 1 \), so:

\[ \frac{z_1}{z_2} = 5i \]
Transcribed Image Text:**Problem Statement:** Find the product \( z_1z_2 \) and the quotient \( \frac{z_1}{z_2} \). Express your answers in polar form. Given: \[ z_1 = 10(\cos(110^\circ) + i \sin(110^\circ)) \] \[ z_2 = 2(\cos(20^\circ) + i \sin(20^\circ)) \] **Solution:** \[ z_1z_2 = \_\_\_\_ \] \[ \frac{z_1}{z_2} = \_\_\_\_ \] **Explanation:** In polar form, the complex number \( z = r(\cos \theta + i \sin \theta) \) can be treated using the modulus \( r \) and argument \( \theta \). For the product \( z_1z_2 \), multiply the moduli and add the arguments: \[ z_1z_2 = (10 \times 2)\left(\cos(110^\circ + 20^\circ) + i \sin(110^\circ + 20^\circ)\right) = 20(\cos(130^\circ) + i \sin(130^\circ)) \] For the quotient \( \frac{z_1}{z_2} \), divide the moduli and subtract the arguments: \[ \frac{z_1}{z_2} = \left(\frac{10}{2}\right)\left(\cos(110^\circ - 20^\circ) + i \sin(110^\circ - 20^\circ)\right) = 5(\cos(90^\circ) + i \sin(90^\circ)) \] \( \cos(90^\circ) = 0 \) and \( \sin(90^\circ) = 1 \), so: \[ \frac{z_1}{z_2} = 5i \]
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,