Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Find the original cross sectional area anf original length from the given information about a tensile test done on a specimen
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In tensile test a plain carbon steel specimen has a (40mm) gauge length and the Final area (A final) of specimen after tensile test was 264.327. The load which caused fracture was (122.5 KN). After fracture, the final length was 47.516mm Choose the correct answers for the following sentences: Initial area (A final) of specimen * O568.254 O 313.994 325.256 152.368arrow_forwardMENG364 MANUFACTURING TECHNOLOGY PLEASE Put the letter as it is and I will put the student number later Please solve it very quickly ?? ?? ??arrow_forwardwhy do we physically mark gauge length on the samples before the test even though the machine is measuring displacement for us.(Tensile Testing Machine) What is the effect of rate of loading, what is a soft start what is its importance?arrow_forward
- in a Torsion test done. the following data were collected: the radius of the specimen was 3mm and the gauge length was 76.2mm. During the elastic zone: T1=0. 01N.m. 81=14.760, 12-17.13N.m, and 02 36.910, The modulus of rigidity G will be equal to: Select one O a 44.283 GPa. O b. 26.522 GPa. O C 462.91 MPa. O d. 12.94 GPa.arrow_forwardWhat does a tensile test show?arrow_forwardHow can I solve for the %0.2 offset strain and the calculated stress? Original diameter : 6mm Original length : 30mm Fracture diameter : 4.54mmarrow_forward
- I want answers to all four questions if possible. Thanks for help :) Following experimental data are obtained from tensile test of a rectangular test specimen with original thickness of 2,5 mm, gauge width of 24 mm and gauge length of 101 mm: Load (N) Elongation (mm) 0 0 24372 0,183 23008 0,315 28357 5,777 35517 12,315 27555 17,978 23750 23,865 Based on the information above; draw stress-strain diagram of the material and answer the following questions. - Calculate the fracture strength (in MPa) of the material. - Calculate the percent elongation of the specimen at fracture point. - Determine the modulus of resilience (in N.mm/mm3) of the material. (Use at least five decimal units) - Determine the toughness index number (in N.mm/mm3) of the material.arrow_forwardIn a tensile test for an aluminum alloy, the sample is 2 inches long and 0.5 inches in diameter. The proportional portion of the tension stress-strain diagram for an aluminum alloy is shown below. It the diameter change of the sample was also monitored during the above test, and it was found that the lateral strain of the sample is 1/3 of its axial longitudinal strain, what is the Poisson' ratio of the material under test: ___. Calculate your answer to 2 decimal place.arrow_forwardIn tensile test a plain carbon steel specimen has a (40mm) gauge length and the Final area (A final) of specimen after tensile test was 264.327. The load which caused fracture was (122.5 KN). After fracture, the final length was 47.516mm The % reduction in area is * O 15.819% 18.819 O 17.819 O 20.819arrow_forward
- Question Following experimental data are obtained from tensile test of a rectangular test specimen with original thickness of 2,5 mm, gauge width of 24 mm and gauge length of 101 mm: Load (N) Elongation (mm) 0 0 24372 0,183 23008 0,315 28357 5,777 35517 12,315 27555 17,978 23750 23,865 Based on the information above; draw stress-strain diagram of the material and answer the following questions. - Calculate the yield strength (in MPa) of the material. - Calculate the percent elongation of the specimen at yield point. (Use at least five decimal units) - Calculate the stiffness (in MPa) of the specimen material. - Calculate the ultimate strength (in MPa) of the material. - Calculate the percent elongation of the specimen at point of ultimate strength.arrow_forwardBSEN10045 is British standard for Brinell Hardness test Select one: True Falsearrow_forwardwould you please describe this picture for me i have to present it to audience please to be more value?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY