Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Question
Hello, Can you review my answer for this problem. I’m not sure of my work especially A and D Thank you
**Part Three**

Find the inverse of each function below. Check your answers in Desmos.

a. \( f(x) = 2x^2 - 4 \)
- \( y = 2x^2 - 4 \)
- \( x = 2y^2 - 4 \)
- \( x + 4 = 2y^2 \)
- \( \frac{x + 4}{2} = y^2 \)
- Solving for \( y \): \( y = \sqrt{\frac{x + 4}{2}} \)

b. \( f(x) = \frac{3}{x} + 2 \)
- \( y = \frac{3}{x} + 2 \)
- \( y - 2 = \frac{3}{x} \)
- \( \frac{3}{y - 2} = x \)

c. \( f(x) = \frac{2x - 9}{x + 2} \)
- \( y = \frac{2x - 9}{x + 2} \)
- Cross-multiply: \( x(y + 2) = 2y - 9 \)
- \( xy + 2x = 2y - 9 \)
- Rearrange terms: \( x(y + 2) = 2y + 9 \)
- Solve for \( x \): \( x = \frac{2y + 9}{y + 2} \)

d. \( f(x) = a(x - h)^2 + k \)
- \( y = a(x - h)^2 + k \)
- Solve: \( y - k = a(x - h)^2 \)
- \( \frac{y - k}{a} = (x - h)^2 \)
- \( \sqrt{\frac{y - k}{a}} + h = x \)
- So the inverse: \( f^{-1}(x) = \sqrt{\frac{x - k}{a}} + h \)

**Part Four**

Graph \( y = \log_3 x \) and \( y = 3^x \) on the same axis using a table. You may want to use two colors to separate the graphs.

a) Table and Graph:
- For \( y = \log_3 x \)
  - \( f(1) = \log_
expand button
Transcribed Image Text:**Part Three** Find the inverse of each function below. Check your answers in Desmos. a. \( f(x) = 2x^2 - 4 \) - \( y = 2x^2 - 4 \) - \( x = 2y^2 - 4 \) - \( x + 4 = 2y^2 \) - \( \frac{x + 4}{2} = y^2 \) - Solving for \( y \): \( y = \sqrt{\frac{x + 4}{2}} \) b. \( f(x) = \frac{3}{x} + 2 \) - \( y = \frac{3}{x} + 2 \) - \( y - 2 = \frac{3}{x} \) - \( \frac{3}{y - 2} = x \) c. \( f(x) = \frac{2x - 9}{x + 2} \) - \( y = \frac{2x - 9}{x + 2} \) - Cross-multiply: \( x(y + 2) = 2y - 9 \) - \( xy + 2x = 2y - 9 \) - Rearrange terms: \( x(y + 2) = 2y + 9 \) - Solve for \( x \): \( x = \frac{2y + 9}{y + 2} \) d. \( f(x) = a(x - h)^2 + k \) - \( y = a(x - h)^2 + k \) - Solve: \( y - k = a(x - h)^2 \) - \( \frac{y - k}{a} = (x - h)^2 \) - \( \sqrt{\frac{y - k}{a}} + h = x \) - So the inverse: \( f^{-1}(x) = \sqrt{\frac{x - k}{a}} + h \) **Part Four** Graph \( y = \log_3 x \) and \( y = 3^x \) on the same axis using a table. You may want to use two colors to separate the graphs. a) Table and Graph: - For \( y = \log_3 x \) - \( f(1) = \log_
Expert Solution
Check Mark
Still need help?
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

In the same problem, can you review D? 

Solution
Bartleby Expert
by Bartleby Expert
SEE SOLUTION
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

In the same problem, can you review D? 

Solution
Bartleby Expert
by Bartleby Expert
SEE SOLUTION
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning