Find the general solution of у "— 2у "— 16у'+ 32у -0 given that r = 2 is a root of the characteristic equation. 4x -4x -4x b) O y=C, e*+Ce 4 x c) O y=C,e*+C, 4x d) O y-c, + -4x C, e 2 4x + C,e + C, f) O None of the above.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

will rate if correct!

**Problem: Find the General Solution**

Find the general solution of the differential equation given that \( r_1 = 2 \) is a root of the characteristic equation.

\[
y''' - 2y'' - 16y' + 32y = 0
\]

**Options:**

a) \( y = C_1 e^{2x} + C_2 e^{4x} + C_3 x e^{4x} \)

b) \( y = C_1 e^{-2x} + C_2 e^{4x} + C_3 e^{-4x} \)

c) \( y = C_1 e^{-2x} + C_2 e^{-4x} + C_3 e^{4x} \)

d) \( y = C_1 e^{2x} + C_2 e^{4x} + C_3 e^{-4x} \)

e) \( y = C_1 e^{2x} + C_2 e^{4x} + C_3 e^{4x} \)

f) \(\circ\) None of the above.
Transcribed Image Text:**Problem: Find the General Solution** Find the general solution of the differential equation given that \( r_1 = 2 \) is a root of the characteristic equation. \[ y''' - 2y'' - 16y' + 32y = 0 \] **Options:** a) \( y = C_1 e^{2x} + C_2 e^{4x} + C_3 x e^{4x} \) b) \( y = C_1 e^{-2x} + C_2 e^{4x} + C_3 e^{-4x} \) c) \( y = C_1 e^{-2x} + C_2 e^{-4x} + C_3 e^{4x} \) d) \( y = C_1 e^{2x} + C_2 e^{4x} + C_3 e^{-4x} \) e) \( y = C_1 e^{2x} + C_2 e^{4x} + C_3 e^{4x} \) f) \(\circ\) None of the above.
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,