Find the general anti-derivative of f(x) = 3. + Vx on a continuous interval. Please select file(s) Select file(s)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Find the general anti-derivative of \( f(x) = \frac{1}{\sqrt[3]{x}} + \sqrt[3]{x} \) on a continuous interval.

**Explanation:**

To solve this problem, you will need to integrate the function \( f(x) \). The function is composed of two terms:

1. \( \frac{1}{\sqrt[3]{x}} \) can be rewritten as \( x^{-\frac{1}{3}} \).
2. \( \sqrt[3]{x} \) can be rewritten as \( x^{\frac{1}{3}} \).

**Integration Steps:**

- For \( x^{-\frac{1}{3}} \), the integral is \( \frac{x^{-\frac{1}{3} + 1}}{-\frac{1}{3} + 1} = \frac{x^{\frac{2}{3}}}{\frac{2}{3}} = \frac{3}{2}x^{\frac{2}{3}} \).
  
- For \( x^{\frac{1}{3}} \), the integral is \( \frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1} = \frac{x^{\frac{4}{3}}}{\frac{4}{3}} = \frac{3}{4}x^{\frac{4}{3}} \).

The general anti-derivative will include both integrals and a constant of integration \( C \):

\[ F(x) = \frac{3}{2}x^{\frac{2}{3}} + \frac{3}{4}x^{\frac{4}{3}} + C \]
Transcribed Image Text:**Problem Statement:** Find the general anti-derivative of \( f(x) = \frac{1}{\sqrt[3]{x}} + \sqrt[3]{x} \) on a continuous interval. **Explanation:** To solve this problem, you will need to integrate the function \( f(x) \). The function is composed of two terms: 1. \( \frac{1}{\sqrt[3]{x}} \) can be rewritten as \( x^{-\frac{1}{3}} \). 2. \( \sqrt[3]{x} \) can be rewritten as \( x^{\frac{1}{3}} \). **Integration Steps:** - For \( x^{-\frac{1}{3}} \), the integral is \( \frac{x^{-\frac{1}{3} + 1}}{-\frac{1}{3} + 1} = \frac{x^{\frac{2}{3}}}{\frac{2}{3}} = \frac{3}{2}x^{\frac{2}{3}} \). - For \( x^{\frac{1}{3}} \), the integral is \( \frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1} = \frac{x^{\frac{4}{3}}}{\frac{4}{3}} = \frac{3}{4}x^{\frac{4}{3}} \). The general anti-derivative will include both integrals and a constant of integration \( C \): \[ F(x) = \frac{3}{2}x^{\frac{2}{3}} + \frac{3}{4}x^{\frac{4}{3}} + C \]
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning