Find the function r that satisfies the following condition r'(t) = (1,31²,2) ; r(1) = (6, – 2,5) r(t) = (OOD %3D

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%

14.20 Please help me answer this math problem.

To find the function \( \mathbf{r}(t) \) that satisfies the following conditions:

\[
\mathbf{r}'(t) = \langle 1, 3t^2, 2t \rangle ; \, \mathbf{r}(1) = \langle 6, -2, 5 \rangle
\]

We need to integrate the components of the derivative vector \( \mathbf{r}'(t) \) to find \( \mathbf{r}(t) \).

1. Integrate the first component:
   \[
   \int 1 \, dt = t + C_1
   \]

2. Integrate the second component:
   \[
   \int 3t^2 \, dt = t^3 + C_2
   \]

3. Integrate the third component:
   \[
   \int 2t \, dt = t^2 + C_3
   \]

Next, apply the initial condition \( \mathbf{r}(1) = \langle 6, -2, 5 \rangle \) to solve for the constants \( C_1, C_2, C_3 \).

Thus, \( \mathbf{r}(t) = \langle t + C_1, t^3 + C_2, t^2 + C_3 \rangle \).

By substituting \( t = 1 \):
\[
\langle 1 + C_1, 1^3 + C_2, 1^2 + C_3 \rangle = \langle 6, -2, 5 \rangle
\]

This yields the equations:
1. \( 1 + C_1 = 6 \) ⟹ \( C_1 = 5 \)
2. \( 1 + C_2 = -2 \) ⟹ \( C_2 = -3 \)
3. \( 1 + C_3 = 5 \) ⟹ \( C_3 = 4 \)

Finally, the function is:
\[
\mathbf{r}(t) = \langle t + 5, t^3 - 3, t^2 + 4 \rangle
\]
Transcribed Image Text:To find the function \( \mathbf{r}(t) \) that satisfies the following conditions: \[ \mathbf{r}'(t) = \langle 1, 3t^2, 2t \rangle ; \, \mathbf{r}(1) = \langle 6, -2, 5 \rangle \] We need to integrate the components of the derivative vector \( \mathbf{r}'(t) \) to find \( \mathbf{r}(t) \). 1. Integrate the first component: \[ \int 1 \, dt = t + C_1 \] 2. Integrate the second component: \[ \int 3t^2 \, dt = t^3 + C_2 \] 3. Integrate the third component: \[ \int 2t \, dt = t^2 + C_3 \] Next, apply the initial condition \( \mathbf{r}(1) = \langle 6, -2, 5 \rangle \) to solve for the constants \( C_1, C_2, C_3 \). Thus, \( \mathbf{r}(t) = \langle t + C_1, t^3 + C_2, t^2 + C_3 \rangle \). By substituting \( t = 1 \): \[ \langle 1 + C_1, 1^3 + C_2, 1^2 + C_3 \rangle = \langle 6, -2, 5 \rangle \] This yields the equations: 1. \( 1 + C_1 = 6 \) ⟹ \( C_1 = 5 \) 2. \( 1 + C_2 = -2 \) ⟹ \( C_2 = -3 \) 3. \( 1 + C_3 = 5 \) ⟹ \( C_3 = 4 \) Finally, the function is: \[ \mathbf{r}(t) = \langle t + 5, t^3 - 3, t^2 + 4 \rangle \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning