![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
![**Finding the Equilibrium Vector for a Transition Matrix**
To determine the equilibrium vector for the given transition matrix:
\[
\begin{bmatrix}
\frac{1}{5} & \frac{4}{5} \\
\frac{1}{9} & \frac{8}{9}
\end{bmatrix}
\]
*Steps to Find the Equilibrium Vector:*
1. **Understand the Matrix**:
- The matrix is a \(2 \times 2\) transition matrix where each element represents the probability of transitioning from one state to another.
2. **Equilibrium Vector**:
- The equilibrium vector, usually denoted as \(\vec{v}\), is a steady-state vector that satisfies \(\text{Matrix} \times \vec{v} = \vec{v}\).
- Each element of the equilibrium vector represents a steady-state probability associated with each state.
3. **Solution Requirement**:
- Solve the equation \(\begin{bmatrix} \frac{1}{5} & \frac{4}{5} \\ \frac{1}{9} & \frac{8}{9} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}\).
- Additionally, ensure \(x + y = 1\) as it must form a probability distribution.
4. **Finding the Values**:
- Calculate using algebraic or computational tools to derive the values of \(x\) and \(y\) that satisfy the above conditions.
*Input & Instructions*:
- Enter your solution in the provided box with simplified fractions or integers for each element of the equilibrium vector.
**Note**: Carefully solve the system either by substitution or matrix algebra to confirm that the vector sum equals 1.
(Typing an integer or simplified fraction for each matrix element is required in the provided box for the equilibrium vector.)](https://content.bartleby.com/qna-images/question/b5403849-9f1b-47b1-a027-5bfd8ac96652/30afc01d-6d2e-4b00-876c-273724e5d190/tbbaaas_thumbnail.png)
Transcribed Image Text:**Finding the Equilibrium Vector for a Transition Matrix**
To determine the equilibrium vector for the given transition matrix:
\[
\begin{bmatrix}
\frac{1}{5} & \frac{4}{5} \\
\frac{1}{9} & \frac{8}{9}
\end{bmatrix}
\]
*Steps to Find the Equilibrium Vector:*
1. **Understand the Matrix**:
- The matrix is a \(2 \times 2\) transition matrix where each element represents the probability of transitioning from one state to another.
2. **Equilibrium Vector**:
- The equilibrium vector, usually denoted as \(\vec{v}\), is a steady-state vector that satisfies \(\text{Matrix} \times \vec{v} = \vec{v}\).
- Each element of the equilibrium vector represents a steady-state probability associated with each state.
3. **Solution Requirement**:
- Solve the equation \(\begin{bmatrix} \frac{1}{5} & \frac{4}{5} \\ \frac{1}{9} & \frac{8}{9} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}\).
- Additionally, ensure \(x + y = 1\) as it must form a probability distribution.
4. **Finding the Values**:
- Calculate using algebraic or computational tools to derive the values of \(x\) and \(y\) that satisfy the above conditions.
*Input & Instructions*:
- Enter your solution in the provided box with simplified fractions or integers for each element of the equilibrium vector.
**Note**: Carefully solve the system either by substitution or matrix algebra to confirm that the vector sum equals 1.
(Typing an integer or simplified fraction for each matrix element is required in the provided box for the equilibrium vector.)
Expert Solution
![Check Mark](/static/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
![Blurred answer](/static/blurred-answer.jpg)
Knowledge Booster
Similar questions
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
![Text book image](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman