Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question

find a unit vector in the direction of the given vector

### Problem 14

**Question:**
Find the distance between the vectors **u** and **z**:

u = \(\begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}\)

and 

z = \(\begin{bmatrix} -4 \\ -1 \\ 4 \end{bmatrix}\).

**Explanation:**
To determine the distance between two vectors **u** and **z** in 3-dimensional space, we use the Euclidean distance formula. This formula is: 

\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \]

**Steps:**

1. Identify the components of vectors **u** and **z**.
   - For **u** = \(\begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}\) and **z** = \(\begin{bmatrix} -4 \\ -1 \\ 4 \end{bmatrix}\), we have:
     - \(u_1 = 0\), \(u_2 = -5\), \(u_3 = 2\)
     - \(z_1 = -4\), \(z_2 = -1\), \(z_3 = 4\)

2. Substitute these values into the Euclidean distance formula:
   \[
   \text{Distance} = \sqrt{(-4 - 0)^2 + (-1 + 5)^2 + (4 - 2)^2}
   \]

3. Simplify the calculation step-by-step:
   \[
   = \sqrt{(-4)^2 + (4)^2 + (2)^2}
   \]
   \[
   = \sqrt{16 + 16 + 4}
   \]
   \[
   = \sqrt{36}
   \]
   \[
   = 6
   \]

**Conclusion:**
The distance between the vectors **u** and **z** is 6 units.
expand button
Transcribed Image Text:### Problem 14 **Question:** Find the distance between the vectors **u** and **z**: u = \(\begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}\) and z = \(\begin{bmatrix} -4 \\ -1 \\ 4 \end{bmatrix}\). **Explanation:** To determine the distance between two vectors **u** and **z** in 3-dimensional space, we use the Euclidean distance formula. This formula is: \[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \] **Steps:** 1. Identify the components of vectors **u** and **z**. - For **u** = \(\begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}\) and **z** = \(\begin{bmatrix} -4 \\ -1 \\ 4 \end{bmatrix}\), we have: - \(u_1 = 0\), \(u_2 = -5\), \(u_3 = 2\) - \(z_1 = -4\), \(z_2 = -1\), \(z_3 = 4\) 2. Substitute these values into the Euclidean distance formula: \[ \text{Distance} = \sqrt{(-4 - 0)^2 + (-1 + 5)^2 + (4 - 2)^2} \] 3. Simplify the calculation step-by-step: \[ = \sqrt{(-4)^2 + (4)^2 + (2)^2} \] \[ = \sqrt{16 + 16 + 4} \] \[ = \sqrt{36} \] \[ = 6 \] **Conclusion:** The distance between the vectors **u** and **z** is 6 units.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,