Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Question

help me please

### Problem Statement

Find the arc length of the curve \( x = 3 \cos(7t), y = 3 \sin(7t) \) with \(0 \leq t \leq \frac{\pi}{28}\).

### Submission

- \(-\cot(7t)\)  
  **Status**: Incorrect  
  **Comment**: Syntax incomplete.

### Assistance

- **Question Help**: Message instructor
- **Add Work**: Option available

---

### Explanation

The problem requires finding the arc length of a parametric curve defined by the equations \( x = 3 \cos(7t) \) and \( y = 3 \sin(7t) \) within the given range for the parameter \( t \).

#### To find the arc length of a parametric curve:

Use the formula for the arc length \( L \) of a parametric curve \((x(t), y(t))\) from \( t = a \) to \( t = b \):

\[ L = \int_{a}^{b} \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt \]

Given:
- \( x = 3 \cos(7t) \)
- \( y = 3 \sin(7t) \)
- \( 0 \leq t \leq \frac{\pi}{28} \)

#### Steps to solve:

1. Find \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \):
   
   \[
   \frac{dx}{dt} = \frac{d}{dt} (3 \cos(7t)) = 3 \cdot (-7 \sin(7t)) = -21 \sin(7t)
   \]

   \[
   \frac{dy}{dt} = \frac{d}{dt} (3 \sin(7t)) = 3 \cdot (7 \cos(7t)) = 21 \cos(7t)
   \]

2. Substitute \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \) into the arc length formula:

   \[
   L = \int_{0}^{\frac{\pi}{28}} \sqrt{(-21 \sin
expand button
Transcribed Image Text:### Problem Statement Find the arc length of the curve \( x = 3 \cos(7t), y = 3 \sin(7t) \) with \(0 \leq t \leq \frac{\pi}{28}\). ### Submission - \(-\cot(7t)\) **Status**: Incorrect **Comment**: Syntax incomplete. ### Assistance - **Question Help**: Message instructor - **Add Work**: Option available --- ### Explanation The problem requires finding the arc length of a parametric curve defined by the equations \( x = 3 \cos(7t) \) and \( y = 3 \sin(7t) \) within the given range for the parameter \( t \). #### To find the arc length of a parametric curve: Use the formula for the arc length \( L \) of a parametric curve \((x(t), y(t))\) from \( t = a \) to \( t = b \): \[ L = \int_{a}^{b} \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt \] Given: - \( x = 3 \cos(7t) \) - \( y = 3 \sin(7t) \) - \( 0 \leq t \leq \frac{\pi}{28} \) #### Steps to solve: 1. Find \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \): \[ \frac{dx}{dt} = \frac{d}{dt} (3 \cos(7t)) = 3 \cdot (-7 \sin(7t)) = -21 \sin(7t) \] \[ \frac{dy}{dt} = \frac{d}{dt} (3 \sin(7t)) = 3 \cdot (7 \cos(7t)) = 21 \cos(7t) \] 2. Substitute \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \) into the arc length formula: \[ L = \int_{0}^{\frac{\pi}{28}} \sqrt{(-21 \sin
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning