Find (f)'(a). f(x) = 3x3 + 4x² + 6x + 1, a = 1

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Find \((f^{-1})'(a)\).

Given:
\[ f(x) = 3x^3 + 4x^2 + 6x + 1 \]
\[ a = 1 \]

Determine \((f^{-1})'(a)\).

**Solution:**  
To find \((f^{-1})'(a)\), we can use the formula for the derivative of an inverse function: 

\[
(f^{-1})'(a) = \frac{1}{f'(b)}
\]

where \(b\) is such that \(f(b) = a\).

1. **Compute \(f'(x)\):**  
   \[
   f'(x) = \frac{d}{dx}(3x^3 + 4x^2 + 6x + 1) = 9x^2 + 8x + 6
   \]

2. **Solve \(f(x) = 1\):**  
   Set the equation \(3x^3 + 4x^2 + 6x + 1 = 1\).
   \[
   3x^3 + 4x^2 + 6x = 0
   \]
   Factor the equation:
   \[
   x(3x^2 + 4x + 6) = 0
   \]

   Solutions:
   \[
   x = 0 \quad (\text{Other factors may need further analysis to verify additional roots})
   \]

3. **Substitute \(x = 0\) in \(f'(x)\):**  
   \[
   f'(0) = 9(0)^2 + 8(0) + 6 = 6
   \]

4. **Compute \((f^{-1})'(1)\):**  
   \[
   (f^{-1})'(1) = \frac{1}{6}
   \]

Hence, \((f^{-1})'(1) = \frac{1}{6}\).
Transcribed Image Text:Find \((f^{-1})'(a)\). Given: \[ f(x) = 3x^3 + 4x^2 + 6x + 1 \] \[ a = 1 \] Determine \((f^{-1})'(a)\). **Solution:** To find \((f^{-1})'(a)\), we can use the formula for the derivative of an inverse function: \[ (f^{-1})'(a) = \frac{1}{f'(b)} \] where \(b\) is such that \(f(b) = a\). 1. **Compute \(f'(x)\):** \[ f'(x) = \frac{d}{dx}(3x^3 + 4x^2 + 6x + 1) = 9x^2 + 8x + 6 \] 2. **Solve \(f(x) = 1\):** Set the equation \(3x^3 + 4x^2 + 6x + 1 = 1\). \[ 3x^3 + 4x^2 + 6x = 0 \] Factor the equation: \[ x(3x^2 + 4x + 6) = 0 \] Solutions: \[ x = 0 \quad (\text{Other factors may need further analysis to verify additional roots}) \] 3. **Substitute \(x = 0\) in \(f'(x)\):** \[ f'(0) = 9(0)^2 + 8(0) + 6 = 6 \] 4. **Compute \((f^{-1})'(1)\):** \[ (f^{-1})'(1) = \frac{1}{6} \] Hence, \((f^{-1})'(1) = \frac{1}{6}\).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning