Find an LU decomposition (factorization) of 9. 8 A = 5 3 That is, write A = LU where L is a lower triangular matrix with ones in the diagonal, and U is an uppe triangular matrix. Use the LU factorization to solve the system 8. 91 10 -5 3 x2 11 A = LU = 18 云=

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
### LU Decomposition (Factorization) - Educational Content

#### LU Decomposition

LU decomposition involves factoring a matrix \( A \) into the product of a lower triangular matrix \( L \) and an upper triangular matrix \( U \).

#### Problem Statement

Find an LU decomposition (factorization) of:

\[
A = \begin{bmatrix}
    8 & 9 \\
    -5 & 3 
\end{bmatrix}
\]

That is, write \( A = LU \) where \( L \) is a lower triangular matrix with ones in the diagonal, and \( U \) is an upper triangular matrix.

#### Application of LU Decomposition

Use the LU factorization to solve the system:

\[
\begin{bmatrix}
    8 & 9 \\
    -5 & 3 
\end{bmatrix}
\begin{bmatrix}
    x_1 \\
    x_2 
\end{bmatrix} 
= 
\begin{bmatrix}
    10 \\
    11 
\end{bmatrix}
\]

#### Step-by-Step Solution Process

1. **LU Factorization:**

   \[
   A = LU = \begin{bmatrix}
       1 & 0 \\
       l_{21} & 1 
   \end{bmatrix}
   \begin{bmatrix}
       u_{11} & u_{12} \\
       0 & u_{22}
   \end{bmatrix}
   \]

2. **Construct matrices \( L \) and \( U \) such that:**

   \[
   \begin{bmatrix}
       8 & 9 \\
       -5 & 3 
   \end{bmatrix} = 
   \begin{bmatrix}
       1 & 0 \\
       l_{21} & 1 
   \end{bmatrix}
   \begin{bmatrix}
       u_{11} & u_{12} \\
       0 & u_{22}
   \end{bmatrix}
   \]

   - From the first row: \(u_{11} = 8\) and \( u_{12} = 9 \).
   - From the element \( -5 = l_{21} \times 8 \) we get \( l_{21} = -\frac{5}{8}
Transcribed Image Text:### LU Decomposition (Factorization) - Educational Content #### LU Decomposition LU decomposition involves factoring a matrix \( A \) into the product of a lower triangular matrix \( L \) and an upper triangular matrix \( U \). #### Problem Statement Find an LU decomposition (factorization) of: \[ A = \begin{bmatrix} 8 & 9 \\ -5 & 3 \end{bmatrix} \] That is, write \( A = LU \) where \( L \) is a lower triangular matrix with ones in the diagonal, and \( U \) is an upper triangular matrix. #### Application of LU Decomposition Use the LU factorization to solve the system: \[ \begin{bmatrix} 8 & 9 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 10 \\ 11 \end{bmatrix} \] #### Step-by-Step Solution Process 1. **LU Factorization:** \[ A = LU = \begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix} \] 2. **Construct matrices \( L \) and \( U \) such that:** \[ \begin{bmatrix} 8 & 9 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix} \] - From the first row: \(u_{11} = 8\) and \( u_{12} = 9 \). - From the element \( -5 = l_{21} \times 8 \) we get \( l_{21} = -\frac{5}{8}
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Matrix Factorization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,