Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

bartleby

Concept explainers

Topic Video
Question
100%

I submitted a picture of the question

**Question:**

Find a parametric equation for the tangent line to the curve defined by \(\mathbf{r}(t) = \langle t^2, 4\sqrt{t}, e^{2t} \rangle\) when \(t = 1\).

**Solution:**

To find the parametric equation for the tangent line, follow these steps:

1. **Find \(\mathbf{r}'(t)\), the derivative of the vector function:**

   \(\mathbf{r}(t) = \langle t^2, 4\sqrt{t}, e^{2t} \rangle\).

   - Differentiate each component with respect to \(t\):
     - \(\frac{d}{dt}(t^2) = 2t\)
     - \(\frac{d}{dt}(4\sqrt{t}) = \frac{d}{dt}(4t^{1/2}) = 2t^{-1/2}\)
     - \(\frac{d}{dt}(e^{2t}) = 2e^{2t}\)

   Thus, \(\mathbf{r}'(t) = \langle 2t, 2t^{-1/2}, 2e^{2t} \rangle\).

2. **Evaluate \(\mathbf{r}(t)\) and \(\mathbf{r}'(t)\) at \(t = 1\):**

   \(\mathbf{r}(1) = \langle 1^2, 4\sqrt{1}, e^{2\cdot1} \rangle = \langle 1, 4, e^2 \rangle\).

   \(\mathbf{r}'(1) = \langle 2\cdot1, 2\cdot1^{-1/2}, 2e^{2\cdot1} \rangle = \langle 2, 2, 2e^2 \rangle\).

3. **Write the equation of the tangent line:**

   The parametric equation of the tangent line at \(t = 1\) is given by:

   \(\mathbf{T}(t) = \mathbf{r}(1) + \mathbf{r}'(1) \cdot (t - 1)\).

   Plug in the values:
expand button
Transcribed Image Text:**Question:** Find a parametric equation for the tangent line to the curve defined by \(\mathbf{r}(t) = \langle t^2, 4\sqrt{t}, e^{2t} \rangle\) when \(t = 1\). **Solution:** To find the parametric equation for the tangent line, follow these steps: 1. **Find \(\mathbf{r}'(t)\), the derivative of the vector function:** \(\mathbf{r}(t) = \langle t^2, 4\sqrt{t}, e^{2t} \rangle\). - Differentiate each component with respect to \(t\): - \(\frac{d}{dt}(t^2) = 2t\) - \(\frac{d}{dt}(4\sqrt{t}) = \frac{d}{dt}(4t^{1/2}) = 2t^{-1/2}\) - \(\frac{d}{dt}(e^{2t}) = 2e^{2t}\) Thus, \(\mathbf{r}'(t) = \langle 2t, 2t^{-1/2}, 2e^{2t} \rangle\). 2. **Evaluate \(\mathbf{r}(t)\) and \(\mathbf{r}'(t)\) at \(t = 1\):** \(\mathbf{r}(1) = \langle 1^2, 4\sqrt{1}, e^{2\cdot1} \rangle = \langle 1, 4, e^2 \rangle\). \(\mathbf{r}'(1) = \langle 2\cdot1, 2\cdot1^{-1/2}, 2e^{2\cdot1} \rangle = \langle 2, 2, 2e^2 \rangle\). 3. **Write the equation of the tangent line:** The parametric equation of the tangent line at \(t = 1\) is given by: \(\mathbf{T}(t) = \mathbf{r}(1) + \mathbf{r}'(1) \cdot (t - 1)\). Plug in the values:
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning