Find a formula for f-¹(x) and (ƒ−¹)'(x) if ƒ(x) = = √√: f-¹(x) = (ƒ-¹)'(x) = x-6

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
**Problem Statement:**

Find a formula for \( f^{-1}(x) \) and \((f^{-1})'(x)\) if \( f(x) = \sqrt{\frac{1}{x - 6}} \).

**Solution:**

1. **Finding the inverse function, \( f^{-1}(x) \):**

   Given \( f(x) = \sqrt{\frac{1}{x - 6}} \).

   To find the inverse, solve for \( x \) in terms of \( y \) where \( y = f(x) \).

   \[
   y = \sqrt{\frac{1}{x - 6}}
   \]

   Square both sides to eliminate the square root:

   \[
   y^2 = \frac{1}{x - 6}
   \]

   Rearrange to solve for \( x \):

   \[
   x - 6 = \frac{1}{y^2}
   \]

   \[
   x = \frac{1}{y^2} + 6
   \]

   Thus, the inverse function is:

   \[
   f^{-1}(x) = \frac{1}{x^2} + 6
   \]

2. **Finding the derivative of the inverse, \( (f^{-1})'(x) \):**

   We use the formula \((f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}\).

   First, differentiate \( f(x) \):

   \[
   f(x) = (x - 6)^{-\frac{1}{2}}
   \]

   Using the chain rule:

   \[
   f'(x) = -\frac{1}{2}(x - 6)^{-\frac{3}{2}}
   \]

   Substitute \( f^{-1}(x) \) into \( f'(x) \):

   \( f'(f^{-1}(x)) = -\frac{1}{2}\left(\frac{1}{x^2}\right)^{-\frac{3}{2}} = -\frac{1}{2}x^3 \)

   Thus, \((f^{-1})'(x)\) is:

   \[
   (f^{-1})'(x) = \frac{1}{-\frac{1}{2}x^
Transcribed Image Text:**Problem Statement:** Find a formula for \( f^{-1}(x) \) and \((f^{-1})'(x)\) if \( f(x) = \sqrt{\frac{1}{x - 6}} \). **Solution:** 1. **Finding the inverse function, \( f^{-1}(x) \):** Given \( f(x) = \sqrt{\frac{1}{x - 6}} \). To find the inverse, solve for \( x \) in terms of \( y \) where \( y = f(x) \). \[ y = \sqrt{\frac{1}{x - 6}} \] Square both sides to eliminate the square root: \[ y^2 = \frac{1}{x - 6} \] Rearrange to solve for \( x \): \[ x - 6 = \frac{1}{y^2} \] \[ x = \frac{1}{y^2} + 6 \] Thus, the inverse function is: \[ f^{-1}(x) = \frac{1}{x^2} + 6 \] 2. **Finding the derivative of the inverse, \( (f^{-1})'(x) \):** We use the formula \((f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}\). First, differentiate \( f(x) \): \[ f(x) = (x - 6)^{-\frac{1}{2}} \] Using the chain rule: \[ f'(x) = -\frac{1}{2}(x - 6)^{-\frac{3}{2}} \] Substitute \( f^{-1}(x) \) into \( f'(x) \): \( f'(f^{-1}(x)) = -\frac{1}{2}\left(\frac{1}{x^2}\right)^{-\frac{3}{2}} = -\frac{1}{2}x^3 \) Thus, \((f^{-1})'(x)\) is: \[ (f^{-1})'(x) = \frac{1}{-\frac{1}{2}x^
Expert Solution
Step 1: Given function

f open parentheses x close parentheses equals square root of fraction numerator 1 over denominator x minus 6 end fraction end root

steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning