College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Three objects of uniform density—a solid sphere, a solid cylinder, and a hollow cylinder— are placed at the top of an incline (Fig. CQ10.13). They are all released from rest at the same elevation and roll without slipping, (a) Which object reaches the bottom first? (b) Which reaches it last? Note: The result is independent of the masses and the radii of the objects. (Try this activity at home!)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are riding your bicycle down the street at a speed of 16 m/s. Your bicycle's frame has a mass of 6.0 kg, and each of its two wheels has mass 2.2 kg and radius 0.34 m. Each wheel can be thought of as a hollow hoop (assuming that the rim has much larger mass than the spokes). What is the total kinetic energy of the bicycle (in Joules)?(take into account both the translational and rotational motion.)arrow_forwardA thin, hollow sphere of mass 2.30 kg and radius 0.610 m is rolling on a horizontal surface with a constant angular speed of 61.0 rpm. What fraction of the kinetic energy is translational kinetic energy, and what fraction of the kinetic energy is rotational kinetic energy?arrow_forwardThe blades of a blender slow from 3.5 rad /s to 1.8 rad/s while rotating through 1.2 rad. (a) What is the angular acceleration (assumed to be constant) (b) How long does this slowing-down take? (c) Assuming that the angular acceleration stays constant, how much longer would it take for the blades to come to rest?arrow_forward
- You are riding your bicycle down the street at a speed of 16 m/s. Your bicycle's frame has a mass of 6.0 kg, and each of its two wheels has mass 2.2 kg and radius 0.34 m. Each wheel can be thought of as a hollow hoop (assuming that the rim has much larger mass than the spokes). What is the total kinetic energy of the bicycle (in Joules), taking into account both the translational and rotational motion?arrow_forwardA hula hoop (which can be modeled as a solid hoop) rolls without slipping across the floor. Observing the motion of its center of mass, you find that it has a translational kinetic energy of 2.42 J. What is its rotational kinetic energy (in Joules) about an axis passing through its center of mass?arrow_forwardA baseball has a mass of 0.15 kg and radius 3.7 cm. In a baseball game, a pitcher throws the ball with a substantial spin so that it moves with an angular speed of 41 rad/s and a linear speed of 34 m/s. Assuming the baseball to be a uniform solid sphere, determine the rotational and translational kinetic energies of the ball in joules. KErotational = KE translational =arrow_forward
- A bicycle wheel with a radius of 350 mm and a mass of (2.40x10^0) kg is spinning freely on a work stand at a rate of 2.0 rev/sec when a (1.0000x10^0) kg kitten jumps on it radially, holds on and starts spinning around. What is the new rotational velocity of the wheel in units of rev/s? Treat the wheel as a thin hoop. Give your answer with three significant figures.arrow_forwardA solid ball (sphere) of mass 1 kg and radius 0.3 m is held at rest at the top of a ramp. There is enough friction so that the ball will roll down the ramp without slipping. The top of the ramp is 10 meters above the ground.What will the speed be of the ball just before it hits the bottom of the ramp?arrow_forwardYou are trying to get a better feel for the effect of geometry and mass distribution on the moment of inertia. You have a solid disk and a thin ring, each of radius, r = 1.30 m, and mass, m = 73.0 kg. You mount both on fixed, horizontal frictionless axes about which they can spin freely. Then you spin them both. (a) How much work do you need to do to get each object to spin at 3.00 rad/s? (b) Let us assume that you have been causing them to spin by using a constant force applied tangentially to their circumferences. If the above speed is to be reached within 0.700 s, what is the magnitude of the force you need to apply to each object? (c) You next attempt to stop each object by pressing one finger on each side of each object, right at the outer edge. The coefficient of kinetic friction between each finger and the surface of each object is 0.300. Find the minimum force you have to apply to stop each object within 1.00 min.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON