f a functiar derivatives z=f(x*, 2ayl -x) tikle u=xZ and W= 2 xy%-X we get 2=2x fu" (2y* -1) · fw t be trat adruits Jecond partral そこ e com condude frat. A) zay = 2x · [fuw • 8xy*] + 8y³ · fww · 8xy* B) zry = 8y3 . fw + 16x²y³ · fuw + (16xy" – 8xy³) · fww C) zry = 0+ 8y3 . fw+ fww · 8xy³ · (2y^ – 1) D) zry = 8xy · fuw + 8xy³ · (2yª – 1) · fww + 8y³ · fw

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
!
Let be
f a functar trat adruits Jecond partial derivativer
Z=f(X, 2xy1 -x
-2xp^-x we get Je = 2x fu" (2yt -1) · fw
If
fate u=xZ
%3D
we
we com condude fnat.
A) zzy = 2x · [fuw · 8xy*] + 8y³ · fww · 8ry
B) zry = 8y . fw + 16x²y³ · fuw + (16xy" – 8xy³) · fwe
C) zry = 0+ 8y*. fw + fww · 8xy³ · (2yª – 1)
D) zry = 8xy3 · fuw + 8xy3 · (2y4 – 1) · fww + 8y³ · fw
Transcribed Image Text:Let be f a functar trat adruits Jecond partial derivativer Z=f(X, 2xy1 -x -2xp^-x we get Je = 2x fu" (2yt -1) · fw If fate u=xZ %3D we we com condude fnat. A) zzy = 2x · [fuw · 8xy*] + 8y³ · fww · 8ry B) zry = 8y . fw + 16x²y³ · fuw + (16xy" – 8xy³) · fwe C) zry = 0+ 8y*. fw + fww · 8xy³ · (2yª – 1) D) zry = 8xy3 · fuw + 8xy3 · (2y4 – 1) · fww + 8y³ · fw
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,