E(Y) = μly o V (Y) = n The first result says the sample means Y is an unbiased estimator of the population mean (that we are taking the draws from), and the second one says as the sample size increases the variance of the sample means becomes smaller and smaller. In this exercise, we are going to see whether we can obtain similar statements for the sampling distribution of sample proportions. Here we are interested in knowing the proportion of people in the population with a certain characteristic. Each member of the population either has this characteristic or not. Now, suppose that the proportion of people with a certain characteristic is p in the population and we take a random sample of size n and then compute the proportion of people with this characteristic in the sample, which is denoted by p. a) Show that E (p) = p. (Hint: Suppose X is the number of people in the sample with the desired characteristic, how would you express p using X and the sample size n? What is the distribution of X?) b) Show that V (p) p(1-P) 71 c) Interpret the results in the previous two parts.
E(Y) = μly o V (Y) = n The first result says the sample means Y is an unbiased estimator of the population mean (that we are taking the draws from), and the second one says as the sample size increases the variance of the sample means becomes smaller and smaller. In this exercise, we are going to see whether we can obtain similar statements for the sampling distribution of sample proportions. Here we are interested in knowing the proportion of people in the population with a certain characteristic. Each member of the population either has this characteristic or not. Now, suppose that the proportion of people with a certain characteristic is p in the population and we take a random sample of size n and then compute the proportion of people with this characteristic in the sample, which is denoted by p. a) Show that E (p) = p. (Hint: Suppose X is the number of people in the sample with the desired characteristic, how would you express p using X and the sample size n? What is the distribution of X?) b) Show that V (p) p(1-P) 71 c) Interpret the results in the previous two parts.
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Show full answers and steps to this exercise
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 17 images
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman