Exercise 3.2.13. Let H(R) a - {(1; i)=ancex} = a, b, 0 0 1 (1) Show H(R) is a group under matrix multiplication, called the Heisenberg Group. (2) Find an explicit example of matrices A, B € H(R) such that AB ‡ BA. (3) Is H(R) a subset of GL3(R)?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

(1) Show H(R) is a group under matrix multiplication, called the Heisenberg Group.
(2) Find an explicit example of matrices A, B ∈ H(R) such that AB ̸= BA.
(3) Is H(R) a subset of GL3 (R)?

**Exercise 3.2.13**

Let 

\[ 
H(\mathbb{R}) = \left\{ 
\begin{pmatrix} 
1 & a & c \\ 
0 & 1 & b \\ 
0 & 0 & 1 
\end{pmatrix} 
: a, b, c \in \mathbb{R} 
\right\}.
\]

1. Show \( H(\mathbb{R}) \) is a group under matrix multiplication, called the **Heisenberg Group**.

2. Find an explicit example of matrices \( A, B \in H(\mathbb{R}) \) such that \( AB \neq BA \).

3. Is \( H(\mathbb{R}) \) a subset of \( GL_3(\mathbb{R}) \)?
Transcribed Image Text:**Exercise 3.2.13** Let \[ H(\mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}. \] 1. Show \( H(\mathbb{R}) \) is a group under matrix multiplication, called the **Heisenberg Group**. 2. Find an explicit example of matrices \( A, B \in H(\mathbb{R}) \) such that \( AB \neq BA \). 3. Is \( H(\mathbb{R}) \) a subset of \( GL_3(\mathbb{R}) \)?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,