Exercise 10.4.4 Let T: R² R² be a linear transformation defined by →>> ¹([%])=[a+b] Consider the two bases ={[][]} B2 2-{}}-{[ - ] }· = Find the matrix MB2,B₁ of T with respect to the bases B₁ and B₂. and B₁

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Exercise 10.4.4**

Let \( T : \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear transformation defined by

\[
T \left( \begin{bmatrix} a \\ b \end{bmatrix} \right) = \begin{bmatrix} a+b \\ a-b \end{bmatrix}.
\]

Consider the two bases

\[
B_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}
\]

and

\[
B_2 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}.
\]

Find the matrix \( M_{B_2, B_1} \) of \( T \) with respect to the bases \( B_1 \) and \( B_2 \).
Transcribed Image Text:**Exercise 10.4.4** Let \( T : \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear transformation defined by \[ T \left( \begin{bmatrix} a \\ b \end{bmatrix} \right) = \begin{bmatrix} a+b \\ a-b \end{bmatrix}. \] Consider the two bases \[ B_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} \] and \[ B_2 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}. \] Find the matrix \( M_{B_2, B_1} \) of \( T \) with respect to the bases \( B_1 \) and \( B_2 \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 20 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,