Example 2.12. A U-tube manometer is used to measure the pressure of oil of specific gravity 0.85 flowing in a pipe line. Its left end is connected to the pipe and the right-limb is open to the atmosphere. The centre of the pipe is 100 mm below the level of mercury (specific gravity = 13.6) in the right limb. If the difference of mercury level in the two limbs is 160 mm, determine the absolute pressure of the oil in the pipe.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
- %٦٢ || 2
a
manometer.pdf
Example 2.12. A U-tube manometer is used to measure the pressure of oil of specific gravity
0.85 flowing in a pipe line. Its left end is connected to the pipe and the right-limb is open to the
atmosphere. The centre of the pipe is 100 mm below the level of mercury (specific gravity = 13.6) in
the right limb. If the difference of mercury level in the two limbs is 160 mm, determine the absolute
pressure of the oil in the pipe.
Liquid (S,-0.85)
of
Mercury (S= 13.6)
n
Ans.(120.84 kPa)
Example 2.13. U-tube manometer containing mercury was used to find the negative pressure
in the pipe, containing water. The right limb was open to the atmosphere. Find the vacuum pressure
in the pipe, if the difference of mercury level in the two limbs was 100 mm and height of water in the
left limb from the centre of the pipe was found to be 40 mm below.
Water (S₁ = 1.0)
E
Pipe
Ans. (13.73 kPa) vaccum
Example 2.21. Fig. 2.23. shows a differential manometer connected at two points A and B. At
A air pressure is 100 kN/m. Find the absolute pressure at B.
Warr
PB-84.36 klu
Air
- 40 mm
h₂= 100 mm
Mercury (S₂= 13.6)
co O V-1
Transcribed Image Text:- %٦٢ || 2 a manometer.pdf Example 2.12. A U-tube manometer is used to measure the pressure of oil of specific gravity 0.85 flowing in a pipe line. Its left end is connected to the pipe and the right-limb is open to the atmosphere. The centre of the pipe is 100 mm below the level of mercury (specific gravity = 13.6) in the right limb. If the difference of mercury level in the two limbs is 160 mm, determine the absolute pressure of the oil in the pipe. Liquid (S,-0.85) of Mercury (S= 13.6) n Ans.(120.84 kPa) Example 2.13. U-tube manometer containing mercury was used to find the negative pressure in the pipe, containing water. The right limb was open to the atmosphere. Find the vacuum pressure in the pipe, if the difference of mercury level in the two limbs was 100 mm and height of water in the left limb from the centre of the pipe was found to be 40 mm below. Water (S₁ = 1.0) E Pipe Ans. (13.73 kPa) vaccum Example 2.21. Fig. 2.23. shows a differential manometer connected at two points A and B. At A air pressure is 100 kN/m. Find the absolute pressure at B. Warr PB-84.36 klu Air - 40 mm h₂= 100 mm Mercury (S₂= 13.6) co O V-1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Work and Heat
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY