College Physics
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Question

The example below comes out of griffiths intro to electrodynamics. I was wondering if you can make a spherical and cylindrical problem like this example, one of each and use to divergence theorem to prove both sides of integrals from gauss divergence theorem. Hope this makes sense and thank 

1.3 Integral Calculus
(iv)
1
ZA
1
(v)
(ii)
(vi)
FIGURE 1.29
1
So much for the left side of the divergence theorem. To evaluate the surface
integral we must consider separately the six faces of the cube:
(i)
(ii)
(iii)
(iv)
(v)
(vi)
So the total flux is:
1 1
[ v · da = f' f' y²dy dz = }
[ v. da
v.da
[ v · da = L
1 1
- S² S² y² dy dz = − } .
[ =
Sv.
$
S
v.da
L
1
1
(2x + z²) dx dz = 3.
1
- S' S² ² dx d² = − } .
L
1 1
[ v-da = L'S'
dz
S' S² 2y dx dy = 1.
Sv da = - S' S
L L
· ½
1
0dx dy = 0.
v da = -+-+1+0=2,
as expected.
33
33
expand button
Transcribed Image Text:1.3 Integral Calculus (iv) 1 ZA 1 (v) (ii) (vi) FIGURE 1.29 1 So much for the left side of the divergence theorem. To evaluate the surface integral we must consider separately the six faces of the cube: (i) (ii) (iii) (iv) (v) (vi) So the total flux is: 1 1 [ v · da = f' f' y²dy dz = } [ v. da v.da [ v · da = L 1 1 - S² S² y² dy dz = − } . [ = Sv. $ S v.da L 1 1 (2x + z²) dx dz = 3. 1 - S' S² ² dx d² = − } . L 1 1 [ v-da = L'S' dz S' S² 2y dx dy = 1. Sv da = - S' S L L · ½ 1 0dx dy = 0. v da = -+-+1+0=2, as expected. 33 33
Example 1.10. Check the divergence theorem using the function
v = y²â+ (2xy + z²) ŷ + (2yz) z
and a unit cube at the origin (Fig. 1.29).
Solution
In this case
V.v=2(x + y),
and
1
{2(x + y) dt = 2 f f f (x +
y)dx dy dz.
1
S'
L'
=
(x + y) dx = + y,
= 1+y, f² (4 + y) dy =
1,
[ '1dz = 1.
0
Thus,
V.vdt = 2.
expand button
Transcribed Image Text:Example 1.10. Check the divergence theorem using the function v = y²â+ (2xy + z²) ŷ + (2yz) z and a unit cube at the origin (Fig. 1.29). Solution In this case V.v=2(x + y), and 1 {2(x + y) dt = 2 f f f (x + y)dx dy dz. 1 S' L' = (x + y) dx = + y, = 1+y, f² (4 + y) dy = 1, [ '1dz = 1. 0 Thus, V.vdt = 2.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON