Question

Transcribed Image Text:e l::00 %7 L& A
... Exercises of optical properties.pdf X
Exercises
Ex1
Salt (NaCl) absorbs very strongly at infrared wavelengths in the re-
strahlen band. The complex dielectric constant at 60um is given by
ɛ, =25+i33. Calculate the absorption coefficient and reflectivity at this
wavelength.
Ex2
The reflectivity of silicon at 560nm is 76% and the absorption
coefficient is 5.6*10'm1. Calculate the transmission and optical density
of a sample with a thickness of 250nm.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images

Knowledge Booster
Similar questions
- A Fabry–Perot laser diode is operating at 1750 nm. The Laser Diode has a cavity length of 400 μm. Therefractive index of semiconductor used is approximately 3.2 and dn/dT= 2.5 × 10-.?^-1. Find the shiftin the emission wavelength for a given mode per unit temperature change.arrow_forwardExplain why the magnitude of the absorption coefficient,a (alpha), in the intensity equation below depends on the radiation wavelength and bandgap for intrinsic insulators and semiconducting materials.arrow_forwardQuestion A5 a) Calculate the average number of phonons occupying a vibrational mode with angular fre- quency w = 4.0 × 10 12 s−1 at T = 300 K. b) Calculate the total energy of the mode at this temperature, expressing your answer in meV.arrow_forward
- What is the d-spacing of an XRD of a BCC crystal corresponding to a peak at 50ᵒ when studied using 1.5406 Aᵒ wavelength X-ray?. If a = 14.5316 Aᵒ for the crystal, what are the Miller indices corresponding to this peak?arrow_forwardThe 2DEG in (iii) is patterned to produce a clean, quasi-1D channel. The current I through the channel is = Nev, where N = the number of electrons, e the electronic charge and = the electrons' group velocity. The number of electrons N(ɛ) = f(ɛ, µ)g(ɛ), where f (ɛ, u) =Fermi-Dirac distribution = 1 and g(ɛ) density of states = dn/dɛ. 1+exp() kBT (a). Write down the dispersion relation for free electrons of mass m. What is their group velocity v? (b). Find an expression for g(ɛ) involving the group velocity. Leave your answer in terms of v.arrow_forwardHowever, the molecule we can encounter everyday continuously vibrates and interact with the surrounding causing its bond vector to vary slightly. According to a new spectroscopy analysis, the adjacent bond vectors was found to be A = 0.82i + 0.99j + 0.84k B = 1.09i + -1.01j + -0.97k What is the angle (in degrees) between the bonds based on this new data?arrow_forward
- An SiO2 layer is formed on top of pure silicon. The Auger peak of silicon is at 91 eV. After oxidation, it is shifted to 78 eV. Therefore, pure and oxidized silicon are easily distinguishable. When the surface is oxidized, the silicon 91 eV peak intensity decreases because of attenuation by the silicon dioxide layer. After an SiO2 layer of thickness t is formed, the 91 eV Auger peak drops to 15% of its clean surface value. The angle of electron collection is 45o from the surface normal. If the mean free path is 0.5 nm for 91 eV electrons in silicon dioxide, what is the thickness t of the oxide coatingarrow_forwardThe cell membrane has ion channels that can exist in two states, open or closed. When they are open, they let Na+ ions through. The energy of the open state is 4*10^-20 J. higher than the state of the closed channel. a. What proportion of the ion channels are open at a temperature of 20 C? b. How high should the temperature be so that 75% of the channels are open? Don't use Chat GPT otherwise I will report from bartleby.arrow_forwardGraph below shows the electron occupancy probability P(E) as a function of energy for Bismuth (mBi = 3.47 × 10-25 kg) at the temperature T = 0 K. What is the number of conduction electrons per unit volume for Bismuth? 1 1 2 3 4 5 6 7 8 E (ev) P(E)arrow_forward
- 5.47 Germanium is doped with 5 × 10¹5 donor atoms per cm³ at T = 300 K. The dimen- sions of the Hall device are d = 5 x 10-³ cm, W = 2 × 10-² cm, and L = 10-¹ cm. The current is I = 250 μA, the applied voltage is V. = 100 mV, and the magnetic flux density is B₂ = 500 gauss = 5 x 10-2 tesla. Calculate: (a) the Hall voltage, (b) the Hall field, and (c) the carrier mobility.arrow_forwardPls help ASAP. Pls show all work annd circle the final answer.arrow_forwardThe ionization energy of a carbon atom is 11.26 eV and its electron affinity is 1.26 eV Estimate the value of the Coulomb integral. α. expressing your answer both in electronvolts and as a molar energy in ki lojoules per mole.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios