Elements Of Electromagnetics
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
Bartleby Related Questions Icon

Related questions

Question

The question and data are in pictures.

Please answer properly with each steps and explanation.

Best of luck.

Thank you so much in advance.

Estimate the loads applied on the Beam 1, including the load transferred from
Slabs 1 and 2 (self-weight of slabs), the self-weight of Beam 1 and the water
tank load. Note that the water tank load may be idealised as a point load. Please
also note that there are also other types of loads, which should be considered
for practical design, but for simplicity they are not considered here.
expand button
Transcribed Image Text:Estimate the loads applied on the Beam 1, including the load transferred from Slabs 1 and 2 (self-weight of slabs), the self-weight of Beam 1 and the water tank load. Note that the water tank load may be idealised as a point load. Please also note that there are also other types of loads, which should be considered for practical design, but for simplicity they are not considered here.
DESIGN DESCRIPTION
To construct a warehouse, the frame system shown in Figure 1 has been
adopted. As an engineer, your task is to analyse the mid frame, highlighted in
RED.
Column 3
Column 1
Beam 1
Columb 2
Slab 1
Beam 1
Slab 2
Beam 2
Beam 3
Column 2
5 m
5 m
5 m
Column 3
Column 1
8 m
(a) Transfer of self-weight of Slabs 1 and 2 to surrounding beams (simplified
case)
Beam 1
Figure 1 A warehouse frame system
The detailed information of the structural components is provided as follows:
Slabs 1 and 2 are made of in-situ cast reinforced concrete and have a thickness
of 150 mm (Figure 2). For simplicity, we assume that half the weight of each slab
is transferred to Beam 1 (as shown in Figure 2). In addition, a water tank full of
water with a weight of 1042 kg (1000 L of water plus weight of the tank) will be
installed in the middle of Beam 1 (Figure 2). All the beams are made of reinforced
concrete and have a standard size of 225 mm x 600 mm. Note that the density of
reinforced concrete is 2500 kg/m³.
Half of slab 1
Half of slab 2
(b) Transfer of self-weight of Slabs 1 and 2 to Beam 1
Figure 2 Load transfer from slabs to beams in the warehouse frame system
A
Beam 1
8 m
600 mm
5 m
125 mm
225 mm
Beam cross section
Column cross section
C
Column 1
D
Column 2
Figure 3 The middle frame
expand button
Transcribed Image Text:DESIGN DESCRIPTION To construct a warehouse, the frame system shown in Figure 1 has been adopted. As an engineer, your task is to analyse the mid frame, highlighted in RED. Column 3 Column 1 Beam 1 Columb 2 Slab 1 Beam 1 Slab 2 Beam 2 Beam 3 Column 2 5 m 5 m 5 m Column 3 Column 1 8 m (a) Transfer of self-weight of Slabs 1 and 2 to surrounding beams (simplified case) Beam 1 Figure 1 A warehouse frame system The detailed information of the structural components is provided as follows: Slabs 1 and 2 are made of in-situ cast reinforced concrete and have a thickness of 150 mm (Figure 2). For simplicity, we assume that half the weight of each slab is transferred to Beam 1 (as shown in Figure 2). In addition, a water tank full of water with a weight of 1042 kg (1000 L of water plus weight of the tank) will be installed in the middle of Beam 1 (Figure 2). All the beams are made of reinforced concrete and have a standard size of 225 mm x 600 mm. Note that the density of reinforced concrete is 2500 kg/m³. Half of slab 1 Half of slab 2 (b) Transfer of self-weight of Slabs 1 and 2 to Beam 1 Figure 2 Load transfer from slabs to beams in the warehouse frame system A Beam 1 8 m 600 mm 5 m 125 mm 225 mm Beam cross section Column cross section C Column 1 D Column 2 Figure 3 The middle frame
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY