Concept explainers
Electron capture is a variant on beta-
e − + 7 B e + ⟶ 7 L i + ν
The initial electron is bound in the atom, so the beryllium mass includes the electron. In fact, since the electron starts bound in the atom, a more-accurate statement of the nuclear reaction is probably:
7 B e ⟶ 7 L i + ν
The masses are beryllium: 7.016929 u, and lithium: 7.016003 u, and refer to the neutral atom as a whole. (Use uc and uc2 as your momentum and energy units -- but carry them along in your calculation.)
The initial beryllium atom is stationary. Calculate the speed of the final lithium nucleus in km/s. (You will make life much easier for yourself if you recognize that practically all the energy released goes into the lighter particle. c = 300,000 km/s)
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
- Use the below values for this problem. Please note that the mass for H is for the entire atom (proton & electron). Neutron: m,= 1.67493x1027 kg= 1.008665 u = 939.57 MeVIC H: my = 1.67353x10 27 kg = 1.007825 u = 938.78 MeVic 1u= 1.6605x10-27 kg = 931.5 MeVic? Consider the following decay: 211 At 207 Bi + a. 211 At has a mass of 210.9874963 u, 207 Bi has a mass of 206.981593 u, and a has a mass of 4.002603 u. 85 83 85 83 Determine the disintegration energy (Q-value) in MeV. Determine the binding energy (in MeV) for 211 At. 85 EB =arrow_forwardThe following reaction shows the beta decay of a °H nucleus. H- He + e +v 3 1 Determine the total energy (in kev) released in this decay. kevarrow_forwardin the stable isotope of Potassium 39K there are 19 electrons, 19 protons and 20 neutrons. The mass of the neutral atom is 38.96371 u. Calculate: Total mass / u Mass defect / u Binding energy / J Binding energy / MeV Mass of the proton = 1.007276 u Mass of the neutron = 1.008665 uarrow_forward
- Consider an object of mass 52.2 kg. Assume that its made up of equal numbers of protons, neutrons, and electrons. How many protons does this object contain? 6.24E+28 7.80E+27 1.56E+28 3.12E+28arrow_forward20 mci 10 mci QUESTION 4 Calculate the mass defect for Deuterium (Hydrogen-2). Mass of Hydrogen-1 is 1.0078 amu Mass of Hydrogen-2 is 2.0141 amu Mass of neutron is 1.0087 amu Mass of electron is 0.0006 amu 4.0306 amu 0.0024 amu 0.0009 amu 2.0165 amu 0.0018 amu QUESTION 5 In the nuclear reaction, Click Save and Submit to sare and submit. Click Save All Answers toarrow_forwardanswer all parts it is one single question.arrow_forward
- In a scattering experiment, an alpha particle A is projected with the velocity up = -(600 m/s)i + (750 m/s)j - (800 m/s)k into a stream of oxygen nuclei moving with a common velocity vo = (630 m/s)j. After colliding successively with nuclei B and C, particle A is observed to move along the path defined by the Points A₁(280, 240, 120) and A2(360, 320, 160), while nuclei B and Care observed to move along paths defined, respectively, by B₁(147, 220, 130), B2(114, 290, 120), and by C₁(240, 232, 90) and C₂(240, 280, 75). All paths are along straight lines and all coordinates are expressed in millimeters. Knowing that the mass of an oxygen nucleus is four times that of an alpha particle, determine the speed of each of the three particles after the collisions. The speed of particle A is The speed of particle B is The speed of particle Cis m/s. m/s. m/s.arrow_forwardIdentify the unknown particles X, A and Z in the following nuclear reactions: (a) X + He → "Mg + ¿n 12 (b) U + n→ Sr + ¿X + 2,n 235 90 Sr + ;X + 38arrow_forwardPart A Some atomic masses Particle Symbol Mass (u) Electron e 0.00055 Part B Proton 1.00728 Neutron 1.00866 Part C Hydrogen 1.00783 Helium 4He 4.00260 Part D Part E Part F Calculate the binding energy per nucleon of the helium nucleus He. Express your answer in megaelectron volts to two significant figures. ? MeVarrow_forward
- 3. A beam of helium-3 atoms (m = 3.016 u) is incident on a target of nitrogen-14 atoms (m = 14.003 u) at rest. Dur- ing the collision, a proton from the helium-3 nucleus passes to the nitrogen nucleus, so that following the col- lision there are two atoms: an atom of "heavy hydro- gen" (deuterium, m = 2.014 u) and an atom of oxygen-15 15.003 u). The incident helium atoms are moving at (m a velocity of 6.346 × 10° m/s. After the collision, the deu- terium atoms are observed to be moving forward (in the same direction as the initial helium atoms) with a velocity of 1.531 x 10' m/s. (a) What is the final velocity of the oxygen-15 atoms? (b) Compare the total kinetic energies before and after the collision.arrow_forwardIn Rutherford’s original experiment, alpha particles (α) were shot toward a gold foil. Gold has an atomic number of 79. An α had initial kinetic energy of about 6 MeV. When an α was closest to a gold nucleus, it stopped completely by the electric repulsive force between the two nuclei. Assume all the α kinetic energy was converted to electric potential energy. The closest distance (center to center) between the two nuclei is _____ x 10-15 meter.arrow_forwardConsider an object of mass 26.1 kg. Assume that it s made up of equal numbers of protons, neutrons, and electrons. How many protons does this object contain? 3.91E+27 7.81E+27 1.56E+28 O 3.12E+28arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON