
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:E2.21 A high-precision positioning slide is shown in Figure
E2.21. Determine the transfer function X,(s)/Xin(s)
when the drive shaft friction is ba= 0.7, the drive shaft
spring constant is k = 2, m, 1, and the sliding
friction is b, 0.8.
ka
Probe
Carriage
me
FIGURE E2.21 Precision slide.
Xp
Sliding
friction, b
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- • View Available Hint(s) Learning Goal: To set up and analyze equations of motion in a cylindrical coordinate system. A = 4.30 rad/s Submit Previous Answers The mechanism shown in the figure below rotates about the vertical axis. The collar has mass an unstretched length of 1000 mm and the spring constant is k = 220 N/m. The distance d= 385 mm , and the collar is required to stay a fixed distancer = 1320 mm from the vertical axis.(Figure 1) = 3.25 kg. The spring has v Correct Part B- The minimum required angular velocity when there is friction Consider the same mechanism again, with m = 3.25 kg, d = 385 mm, k = 220 N/m, only now, instead of being smooth, the collar and shaft have a maxirmurm coefficient of friction of p. = 1.36. What is the minimum angular velocity required to keep the collar at a constant distance r= 1320 mm from the axis of rotation? Express your answer to three significant figures. Figure 1 of 1> • View Available Hint(s) η ΑΣφ It vec rad/s Submit d Part C Complete…arrow_forwardA forensic scientist test-fires a projectile (mass mP) at a cubic block (volume V), made from wood (density D), resting on a rough surface (static = kinetic coefficient uS). The bullet enters the block with an initial velocity vo and exits the block with a velocity v1. The friction forces on the bullet as it passes through the length of the block are unknown and are assumed to be constant. Solve these problems algebraically first: a) What is the deceleration of the bullet inside the block? How many "g" is that? b) How much time does it take the projectile to pass through the block? c) What is the velocity of the block as the bullet exits? d) How long (time) and how far (distance) does the block slide after the bullet has exited? e) Solve the above numerically for the following parameters (g =9.81m/s^2): mP = 10g, V = 0.1m^3, D = 500kg/m^3, µS = 0.8, v0 = 500m/s, v1 = 100m/sarrow_forwardThe physical system shown below consists of a mass, viscous damping, and two parallel springs. Do the following: a) Neatly draw a proper free body diagram b) Find the differential equation of motion that describes the system. c) Find the transfer function X(s) / F(s). x(t) ki k2 m f(t) barrow_forward
- Rotational Mechanical System: Find the transfer function for each rotational mechanicalnetwork shown below.arrow_forwardI will rate you with “LIKE/UPVOTE," if it is COMPLETE STEP-BY-STEP SOLUTION. If it is INCOMPLETE SOLUTION and there are SHORTCUTS OF SOLUTION, I will rate you with “DISLIKE/DOWNVOTE.” Topics we discussed: Statics of Rigid Bodies, Force System of a Force, Moment of a Force, Moment of a Force-Scalar Formulation, Moment of a Force-Vector Formulation, and Principle of Moment, Simplification of a Force System and Couple System, Reduction of Simple Distributed Loadarrow_forwardplease show step by step and neat solution. thank you!arrow_forward
- The ideal gas law, discovered experimentally, is an equation of state that relates the observable state variables of the gas--pressure, temperature, and density (or quantity per volume): PV = NkBT (or pV = nRT), Figure L₂ Lx 1 of 1 Part A Find the magnitude of the average force (F) in the x direction that the particle exerts on the right-hand wall of the container as it bounces back and forth. Assume that collisions between the wall and particle are elastic and that the position of the container is fixed. Be careful of the sign of your answer. Express the magnitude of the average force in terms of m, vr, and L₂. ► View Available Hint(s) Submit Part B IVE ΑΣΦ ? Imagine that the container from the problem introduction is now filled with N identical gas particles of mass m. The particles each have different x velocities. but their average x velocity squared. denotedarrow_forward28. Find the transfer function, G(s) = X1(s)/F(s), for the translational mechanical system shown in Figure P2.13. [Section: 2.5] 2 N-s/m X3(1) 2 N-s/m (1)'x- [4 kg 2 N-s/m 6 N/m 6 N/m 4 kg 0000 4 kg "Frictionless FIGURE P2.13 USE MATRIX METHODarrow_forwardFigure P3.40 illustrates a pendulum with a base that moves horizontally. Thisis a simple model of an overhead crane carrying a suspended load with cables.The load mass is m, the cable length is L, and the base acceleration is a(t).Assuming that the cable acts like a rigid rod, derive the equation of motion interms of ? with a(t) as the input.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY