dy If y = (t + 6t + 5) (6t² + 6), find dt dy dt ||

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Calculus Problem: Derivatives

#### Problem Statement:
If \( y = (t^2 + 6t + 5)(6t^2 + 6) \), find \(\frac{dy}{dt}\).

#### Solution:
To solve this, apply the product rule of differentiation, which states:
\[ \frac{d}{dt} [u \cdot v] = u \cdot \frac{dv}{dt} + v \cdot \frac{du}{dt} \]

Given:
\[ u = t^2 + 6t + 5 \]
\[ v = 6t^2 + 6 \]

1. First, find \(\frac{du}{dt}\) and \(\frac{dv}{dt}\):

\[ \frac{du}{dt} = \frac{d}{dt}(t^2 + 6t + 5) = 2t + 6 \]

\[ \frac{dv}{dt} = \frac{d}{dt}(6t^2 + 6) = 12t \]

2. Apply the product rule:

\[ \frac{dy}{dt} = (t^2 + 6t + 5) \cdot 12t + (6t^2 + 6) \cdot (2t + 6) \]

This simplifies further with substitution and algebraic manipulation to get the final derivative. 

\[ \frac{dy}{dt} = 12t(t^2 + 6t + 5) + (6t^2 + 6)(2t + 6) \]

Substitute and expand:

\[ = 12t^3 + 72t^2 + 60t + 12t^3 + 36t + 12t^2 + 36 \]

Combine like terms:

\[ \frac{dy}{dt} = 24t^3 + 84t^2 + 96t + 36 \]

Therefore,

\[ \boxed{\frac{dy}{dt} = 24t^3 + 84t^2 + 96t + 36} \]
Transcribed Image Text:### Calculus Problem: Derivatives #### Problem Statement: If \( y = (t^2 + 6t + 5)(6t^2 + 6) \), find \(\frac{dy}{dt}\). #### Solution: To solve this, apply the product rule of differentiation, which states: \[ \frac{d}{dt} [u \cdot v] = u \cdot \frac{dv}{dt} + v \cdot \frac{du}{dt} \] Given: \[ u = t^2 + 6t + 5 \] \[ v = 6t^2 + 6 \] 1. First, find \(\frac{du}{dt}\) and \(\frac{dv}{dt}\): \[ \frac{du}{dt} = \frac{d}{dt}(t^2 + 6t + 5) = 2t + 6 \] \[ \frac{dv}{dt} = \frac{d}{dt}(6t^2 + 6) = 12t \] 2. Apply the product rule: \[ \frac{dy}{dt} = (t^2 + 6t + 5) \cdot 12t + (6t^2 + 6) \cdot (2t + 6) \] This simplifies further with substitution and algebraic manipulation to get the final derivative. \[ \frac{dy}{dt} = 12t(t^2 + 6t + 5) + (6t^2 + 6)(2t + 6) \] Substitute and expand: \[ = 12t^3 + 72t^2 + 60t + 12t^3 + 36t + 12t^2 + 36 \] Combine like terms: \[ \frac{dy}{dt} = 24t^3 + 84t^2 + 96t + 36 \] Therefore, \[ \boxed{\frac{dy}{dt} = 24t^3 + 84t^2 + 96t + 36} \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning