Determine whether the statement below is true or false. Justify the answer. If A is a 3x2 matrix, then the transformation xAx cannot be one-to-one. Choose the correct answer below. O A. The statement is false. A transformation is one-to-one if each vector in the codomain is mapped to by at most one vector in the domain. If Ax=b does not have a free variable, then the transformation represented by A is one-to-one. B. The statement is true. Transformations which have standard matrices which are not square cannot be one-to-one nor onto because they do not have pivot positions in every row and column. O C. The statement is true. A transformation is one-to-one only if the columns of A are linearly independent and a 3x2 matrix cannot have linearly independent columns. O D. The statement is false. A transformation is one-to-one if each vector in the codomain is mapped to by at most one vector in the domain. It does not matter what dimensions a vector is as long as it meets this requirement. The matrix A could be 1x4 and still represent a one-to-one transformation.
Determine whether the statement below is true or false. Justify the answer. If A is a 3x2 matrix, then the transformation xAx cannot be one-to-one. Choose the correct answer below. O A. The statement is false. A transformation is one-to-one if each vector in the codomain is mapped to by at most one vector in the domain. If Ax=b does not have a free variable, then the transformation represented by A is one-to-one. B. The statement is true. Transformations which have standard matrices which are not square cannot be one-to-one nor onto because they do not have pivot positions in every row and column. O C. The statement is true. A transformation is one-to-one only if the columns of A are linearly independent and a 3x2 matrix cannot have linearly independent columns. O D. The statement is false. A transformation is one-to-one if each vector in the codomain is mapped to by at most one vector in the domain. It does not matter what dimensions a vector is as long as it meets this requirement. The matrix A could be 1x4 and still represent a one-to-one transformation.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
Step 1
The given statement, "If is a matrix, then the transformation cannot be one-to-one.
We have to determine whether the statement is true or false.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,