Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN: 9780134463216
Author: Robert F. Blitzer
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

Question
Determine whether the following system has no solution, an infinite number of solutions or a unique solution.
3x
+ 6y +
22 z =
-2x
5 y
17 z
7z
x + 2y
Select Answer
Select Answer
Select Answer
Select Answer
1.
2.
3.
-3 x
5x
5 x
-3 x
5x
5x
8x
16x
-24 x
-
I
I
+
-
+
+
+
5 y
3y
31 y
5y
3 y
31 y
4 y
8 y
12 y
-
+
1
-
+
+
+
+
-
-
+
3 z
N
3 z
9z
N
3z
3z
9z
=
|| ||
=
=
=
=
|| 11
=
10 z
20 z
30 z =
73
|| ||
0
5
1
-27
5
1
-32
= 2
= 4
-6
expand button
Transcribed Image Text:Determine whether the following system has no solution, an infinite number of solutions or a unique solution. 3x + 6y + 22 z = -2x 5 y 17 z 7z x + 2y Select Answer Select Answer Select Answer Select Answer 1. 2. 3. -3 x 5x 5 x -3 x 5x 5x 8x 16x -24 x - I I + - + + + 5 y 3y 31 y 5y 3 y 31 y 4 y 8 y 12 y - + 1 - + + + + - - + 3 z N 3 z 9z N 3z 3z 9z = || || = = = = || 11 = 10 z 20 z 30 z = 73 || || 0 5 1 -27 5 1 -32 = 2 = 4 -6
Expert Solution
Check Mark
Step 1: Introduce to the question 1

The given system of linear equations,

space space space space 3 x space plus space 6 y space plus space 22 z equals 7
minus 2 x space minus space 5 y space minus space 17 z equals 3
space space space space space space x space plus space 2 y space plus space space space 7 z equals 0

the augmented matrix is

open square brackets right enclose table row 3 6 22 row cell negative 2 end cell cell negative 5 end cell cell negative 17 end cell row 1 2 7 end table end enclose table row 7 row 3 row 0 end table close square brackets
Performed space the space row space operartions comma
R subscript 1 rightwards arrow 1 third R subscript 1
open square brackets right enclose table row 1 2 cell 22 over 3 end cell row cell negative 2 end cell cell negative 5 end cell cell negative 17 end cell row 1 2 7 end table end enclose table row cell 7 over 3 end cell row 3 row 0 end table close square brackets
R subscript 2 rightwards arrow R subscript 2 plus 2 R subscript 1
open square brackets right enclose table row 1 2 cell 22 over 3 end cell row 0 cell negative 1 end cell cell negative 7 over 3 end cell row 1 2 7 end table end enclose table row cell 7 over 3 end cell row cell 23 over 3 end cell row 0 end table close square brackets
R subscript 3 rightwards arrow R subscript 3 minus R subscript 1
open square brackets right enclose table row 1 2 cell 22 over 3 end cell row 0 cell negative 1 end cell cell negative 7 over 3 end cell row 0 0 cell negative 1 third end cell end table end enclose table row cell 7 over 3 end cell row cell 23 over 3 end cell row cell negative 7 over 3 end cell end table close square brackets
R subscript 2 rightwards arrow open parentheses negative 1 close parentheses R subscript 2
open square brackets right enclose table row 1 2 cell 22 over 3 end cell row 0 1 cell 7 over 3 end cell row 0 0 cell negative 1 third end cell end table end enclose table row cell 7 over 3 end cell row cell negative 23 over 3 end cell row cell negative 7 over 3 end cell end table close square brackets
R subscript 1 rightwards arrow R subscript 1 minus 2 R subscript 2
open square brackets right enclose table row 1 0 cell 8 over 3 end cell row 0 1 cell 7 over 3 end cell row 0 0 cell negative 1 third end cell end table end enclose table row cell 53 over 3 end cell row cell negative 23 over 3 end cell row cell negative 7 over 3 end cell end table close square brackets
R subscript 3 rightwards arrow open parentheses negative 3 close parentheses R subscript 3
open square brackets right enclose table row 1 0 cell 8 over 3 end cell row 0 1 cell 7 over 3 end cell row 0 0 1 end table end enclose table row cell 53 over 3 end cell row cell negative 23 over 3 end cell row 7 end table close square brackets
R subscript 1 rightwards arrow R subscript 1 minus 8 over 3 R subscript 3 comma space R subscript 2 rightwards arrow R subscript 2 minus 7 over 3 R subscript 3
open square brackets right enclose table row 1 0 0 row 0 1 0 row 0 0 1 end table end enclose table row cell negative 1 end cell row cell negative 24 end cell row 7 end table close square brackets

Here, It can be observed that

Rank of the matrix A = 3 and 

Rank of the augmented matrix = 3.

rightwards double arrowRank of the matrix A = Rank of the augmented matrix = 3 

Also, it is equal to a number of unknowns.

Thus, the system has unique solution.

Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press
Text book image
College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education