Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

bartleby

Concept explainers

Topic Video
Question
### Problem Statement

**2) Determine if the following series converges or diverges using the Integral Test. Show your work carefully and detailed.**

\[ \sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2} \]

### Detailed Explanation

#### Integral Test

To apply the Integral Test, we need to check if \( f(x) = \frac{e^{1/x}}{x^2} \) is continuous, positive, and decreasing for \( x \geq 1 \). 

**Step 1: Verify if \( f(x) \) is continuous, positive, and decreasing**

- **Continuity**: \( e^{1/x} \) is continuous for all \( x \neq 0 \) and \( x^{-2} \) is continuous for \( x \neq 0 \). Hence, \( f(x) \) is continuous for \( x \geq 1 \).
- **Positivity**: \( e^{1/x} > 0 \) and \( x^{-2} > 0 \) for \( x \geq 1 \), thus \( f(x) > 0 \) for \( x \geq 1 \).
- **Decreasing**: To check if \( f(x) \) is decreasing, we can find the derivative \( f'(x) \) and see if it is less than or equal to 0 for \( x \geq 1 \).

**Step 2: Find \( f'(x) \)**

Let \( f(x) = \frac{e^{1/x}}{x^2} \).

Using the quotient rule for derivatives:

\[ f'(x) = \frac{d}{dx} \left( \frac{e^{1/x}}{x^2} \right ) = \frac{(e^{1/x})' \cdot x^2 - e^{1/x} \cdot (x^2)'}{(x^2)^2} \]

First, calculate \( (e^{1/x})' \):

\[ (e^{1/x})' = e^{1/x} \cdot \left( \frac{d}{dx} \left( \frac{1}{x} \right) \right) = e^{1/x} \cdot \left( -\frac{1}{
expand button
Transcribed Image Text:### Problem Statement **2) Determine if the following series converges or diverges using the Integral Test. Show your work carefully and detailed.** \[ \sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2} \] ### Detailed Explanation #### Integral Test To apply the Integral Test, we need to check if \( f(x) = \frac{e^{1/x}}{x^2} \) is continuous, positive, and decreasing for \( x \geq 1 \). **Step 1: Verify if \( f(x) \) is continuous, positive, and decreasing** - **Continuity**: \( e^{1/x} \) is continuous for all \( x \neq 0 \) and \( x^{-2} \) is continuous for \( x \neq 0 \). Hence, \( f(x) \) is continuous for \( x \geq 1 \). - **Positivity**: \( e^{1/x} > 0 \) and \( x^{-2} > 0 \) for \( x \geq 1 \), thus \( f(x) > 0 \) for \( x \geq 1 \). - **Decreasing**: To check if \( f(x) \) is decreasing, we can find the derivative \( f'(x) \) and see if it is less than or equal to 0 for \( x \geq 1 \). **Step 2: Find \( f'(x) \)** Let \( f(x) = \frac{e^{1/x}}{x^2} \). Using the quotient rule for derivatives: \[ f'(x) = \frac{d}{dx} \left( \frac{e^{1/x}}{x^2} \right ) = \frac{(e^{1/x})' \cdot x^2 - e^{1/x} \cdot (x^2)'}{(x^2)^2} \] First, calculate \( (e^{1/x})' \): \[ (e^{1/x})' = e^{1/x} \cdot \left( \frac{d}{dx} \left( \frac{1}{x} \right) \right) = e^{1/x} \cdot \left( -\frac{1}{
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning