College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Open-Ended Response Assessment from Kepler's Laws
Describe what happens to Earth’s orbit when it gets closer to the Sun.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Far into the future scientists are exploring a new planetary system in hopes of finding an Earth-like planet. In this system they find a planet with five moons, and they decide to study these moons in order to learn more about the planet. Here's what they find: • Moon A orbits the planet once every 2.3 days in a circular orbit with a radius of 7.87x107m. • Moon B has a highly elliptical orbit with an average orbital radius of 1.56x108m that takes 6.4 days. • Moon C has a speed of 1550 m/s in its circular orbit of radius 2.03x108 m. • Moon D has an orbital period of 10.9 days with an average orbital radius of 2.23x108 m. • And Moon E seems to get four times further than Moon B does at their furthest point from the planet. Scientists observed that half its orbit took 25.6 days. Use this data to make a linear plot such that you can use the slope of the line to find the mass of the planet. You may plot quantities such as distances, speeds, or periods, or any powers of those quantities, and…arrow_forwardLeave the moon’s amplitude (semi-major axis) constant. How does changing the moon’s orbital period change the calculated value for the planet’s mass?arrow_forwardThe planet Saturn orbits the Sun at an average distance of 888 million miles. Use Kepler’s 3rd law to find the period of Saturn’s orbit, in Earth years.arrow_forward
- The radius of the Earth's orbit is 1.50 x 1011 m and that of Neptune is 4.52 x 1012 m. The star that this planet orbits is identical to our Sun. What is the orbital period of this planet? 2.2 years eBookarrow_forwardPlease answer this questionarrow_forwardUse Kepler's Third Law to determine how many days it takes a spacecraft to travel in an elliptical orbit from a point 6670km from the Earth's center to the Moon, 385000km from the Earth's center.arrow_forward
- Kepler's 1st law says that our Solar System's planets orbit in ellipses around the Sun where the closest distance to the Sun is called perihelion. Suppose I tell you that there is a planet with a perihelion distance of 2 AU and a semi-major axis of 1.5 AU. Does this make physical sense? Explain why or why not.arrow_forwardWhat is Keplers second law in your own wordsarrow_forwardThe radius of the Earth's orbit is 1.50 x 1011 m and that of Pluto is 5.93 x 1012 m. The star that this planet orbits is identical to our Sun. What is the orbital period of this planet? years eBookarrow_forward
- Leave the moon's amplitude (semi-major axis) constant. How does the changing of the moon's orbital period change the calculated value of the planet's mass? a. Increasing the orbital period results in a higher calculated value for the mass of the planet. Decreasing the orbital period results in a lower calculated value for the mass of the planet. b. Increasing the orbital period results in a lower calculated value for the mass of the planet. Decreasing the orbital period results in a higher calculated value for the mass of the planet. c. Increasing the orbital period results in a higher calculates value for the mass of the planet. Decreasing the orbital period results in a higher calculated value for the mass of the planet.arrow_forwardYou are planning a dream vacation to Mars. For the orbital dynamics part of the vacation planning assume that Earth is in a circular orbit 1.00 AU from the Sun and Mars is in a circular orbit 1.52 AU from the Sun. Assume the the orbits of Earth and Mars are coplanar and that they go around the Sun the same way. The orbit you plan to use for your trip is an ellipse with the Sun at one focus (Kepler's 1st Law). The perihelion of the ellipse is at Earth's orbit at 1.00 AU and the aphelion is at Mars' orbit at 1.52 AU. Your spacecraft will go around the Sun in the same sense as Earth and Mars. The orbit you have chosen is called a Hohmann Transfer Orbit. A. What is the semi-major axis a of the spacecraft's orbit? What is the eccentricity of the spacecraft's orbit? B. What is the orbital period of the spacecraft? How long does it take to get to Mars? How long does it take to get back? C. When (at what Earth - Mars configuration) do you launch to go? In other words, where does Mars need to…arrow_forward6. True or false, if Earth were twice as massive but it revolved at the same distance from the sun, it's orbital period would be 2.88 yearsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON