def solve_n_queens(n):
def is_safe(board, row, col):
# Verificar la columna
for i in range(row):
if board[i][col] == 1:
return False
# Verificar la diagonal izquierda
i, j = row, col
while i >= 0 and j >= 0:
if board[i][j] == 1:
return False
i -= 1
j -= 1
# Verificar la diagonal derecha
i, j = row, col
while i >= 0 and j < n:
if board[i][j] == 1:
return False
i -= 1
j += 1
return True
def solve(board, row):
if row >= n:
solution = []
for r in board:
solution.append("".join(['Q' if x == 1 else '.' for x in r]))
solutions.append(solution)
return
for col in range(n):
if is_safe(board, row, col):
board[row][col] = 1
solve(board, row + 1)
board[row][col] = 0
solutions = []
board = [[0] * n for _ in range(n)]
solve(board, 0)
return solutions
# Ejemplo de uso:
n = 8
solutions = solve_n_queens(n)
for sol in solutions:
for row in sol:
print(row)
print()
-
Step by stepSolved in 2 steps
- Am I on the right track? I could use a quick walk through.arrow_forwardimport random; #importing random module aGrades=[]; #list to store grades of all tests for i in range(0,7):aGrades.append(random.randrange(0,100)); #generating 7 random values for testsexamCount=len(aGrades)-1; #examCount is a variable to store count of all exams except last exam totalPoints=sum(aGrades)-aGrades[len(aGrades)-1]; #totalPoints is a variable to store sum of all scores excluding last exam testAverage=(totalPoints)/examCount; #testAverage is a variable used to store the average of scores except last exam finalAverage= (testAverage*0.6)+(aGrades[len(aGrades)-1]*0.4); #finalAverage is a variable to store weighted average of the tests print(aGrades); #printing list of gradesprint(testAverage); #printing test averageprint(finalAverage); #printing final average How do i rewrite the Grades List programs above using a loop instead of referencing the elements of the lists by index.arrow_forwardimport java.util.HashSet; import java.util.Set; // Define a class named LinearSearchSet public class LinearSearchSet { // Define a method named linearSearch that takes in a Set and an integer target // as parameters public static boolean linearSearch(Set<Integer> set, int target) { // Iterate over all elements in the Set for () { // Check if the current value is equal to the target if () { // If so, return true } } // If the target was not found, return false } // Define the main method public static void main(String[] args) { // Create a HashSet of integers and populate integer values Set<Integer> numbers = new HashSet<>(); // Define the target to search for numbers.add(3); numbers.add(6); numbers.add(2); numbers.add(9); numbers.add(11); // Call the linearSearch method with the set…arrow_forward
- IN JAVA LANGUAGE FILL OUT THE FIND MAX FUNCTION public int findMax();/* Returns the largest element in the tree.* This method should call upon the recursive findMax_r() you write.** @return the largest element in the tree (an int value)* Example: findMax() will return 29 for the tree below** (28)* / \* (14) (29)* /* (1)*/ DO THIS BY CALLING A RECURSIVE FUNCTION SHOULD RETURN LARGEST ELEMENT IN A BST THANK YOU!!!!!arrow_forwardThe following questions will be based on the recurrence relation: T(n) = 16T([n/4])+ n! if n > 4 T(n) = 1 if n < 4 Master.Method.5.a.b.k: What is the value of a, b, and k? Variable Coefficient b k Master.Method.5.simplified: Does the simplified master method apply? Master.Method.5.case: What case of the Master Method applies? Master.Method.5.Asymptotic: What is the asymptotically tight bound? Enter an expressionarrow_forward6. Which of the following code snippet performs linear search recursively?arrow_forward
- write this code below as algorithim to determine the leaf node reclusively ? public static void printLeafNodes(TreeNode node) { // base case if (node == null) { return; } if (node.left == null && node.right == null) { System.out.printf("%d ", node.value); } printLeafNodes(node.left); printLeafNodes(node.right); }arrow_forwarddef makeRandomList(size): lyst = [] for count in range(size): while True: number = random.randint(1, size) if not number in lyst: lyst.append(number) break return lyst give me proper analysis of this code and Big Oarrow_forwardJava Programming: Make AST Nodes: IfNode, WhileNode, RepeatNode. All will have BooleanCompare for a condition and a collection of StatementNode. ForNode will have a Node for from and a node for to. This will have to be of type Node because it could be any expression. For example: for a from 1+1 to c-6 Make parsing functions for each. Java won't let you create methods called if(), etc. parseIf() is an example of a way around that; use whatever you like but use good sense in your names. Next let's look at function calls. Each function has a name and a collection of parameters. A parameter can be a VAR variable or something that came from booleanCompare (IntegerNode, VariableReferenceNode, etc). It would be reasonable to make 2 objects - ParameterVariableNode and ParameterExpressionNode. But for this very simple and well-defined case, we can do something simple: ParameterNode has a VariableReferenceNode (for VAR IDENTIFIER) and a Node for the case where the parameter is not a VAR.…arrow_forward
- import numpy as np%matplotlib inlinefrom matplotlib import pyplot as pltimport mathfrom math import exp np.random.seed(9999)def is_good_peak(mu, min_dist=0.8): if mu is None: return False smu = np.sort(mu) if smu[0] < 0.5: return False if smu[-1] > 2.5: return False for p, n in zip(smu, smu[1:]): #print(abs(p-n)) if abs(p-n) < min_dist: return False return True maxx = 3ndata = 500nset = 10l = []answers = []for iset in range(1, nset): npeak = np.random.randint(2,4) xs = np.linspace(0,maxx,ndata) ys = np.zeros(ndata) mu = None while not is_good_peak(mu): mu = np.random.random(npeak)*maxx for ipeak in range(npeak): m = mu[ipeak] sigma = np.random.random()*0.3 + 0.2 height = np.random.random()*0.5 + 1 ys += height*np.exp(-(xs-m)**2/sigma**2) ys += np.random.randn(ndata)*0.07 l.append(ys) answers.append(mu) p6_ys = lp6_xs =…arrow_forwardcompute mystery(5) where public static int mystery (int n) { if (n = 0) return 0; else return n*n + mystery (n-1); O 30 O 55 O 91 O 140 Click Save and Submit to save and submit. Click Save Al Answers to save all answers.arrow_forward%matplotlib inlineimport numpy as npfrom matplotlib import pyplot as pltimport matharrow_forward