d. peqand (рлq)v(-рл-g)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

D part only plz.

Thankyou.

1. Idempotent laws
pvp = p
pap=p
2. Associative laws
(p v q) vr = p v (q v r)
(p^q)ar=p^ (q^r)
3. Commutative laws
pvq = qvp
pnq = qAp
4. Distributive laws
pv (qAr) (φν)^ φVr)
p^(q vr) = (p^q) v (p ^r)
5. Identity laws
pVF = p
pAT = p
6. Domination laws
pVT =T
pAF = F
7. Complement laws
pV-p = T
pA-p = F
8. Double negation law
p= ץרה
9. De Morgan's laws
¬(p v q) = -p A ¬q
¬(p Aq) = -p V ¬4
10. Absorption laws
pv (p^ q) = p
p^ (p v q) = p
11. Conditional identities
p- q = -p v q
p+ q = (p → q) ^ (q → p)
Transcribed Image Text:1. Idempotent laws pvp = p pap=p 2. Associative laws (p v q) vr = p v (q v r) (p^q)ar=p^ (q^r) 3. Commutative laws pvq = qvp pnq = qAp 4. Distributive laws pv (qAr) (φν)^ φVr) p^(q vr) = (p^q) v (p ^r) 5. Identity laws pVF = p pAT = p 6. Domination laws pVT =T pAF = F 7. Complement laws pV-p = T pA-p = F 8. Double negation law p= ץרה 9. De Morgan's laws ¬(p v q) = -p A ¬q ¬(p Aq) = -p V ¬4 10. Absorption laws pv (p^ q) = p p^ (p v q) = p 11. Conditional identities p- q = -p v q p+ q = (p → q) ^ (q → p)
Part II: Proving logical equivalence using laws of propositional logic
4.
Use the laws of propositional logic to prove that the following compound
propositions are logically equivalent.
a. (pA¬q) V ¬(p V q) and ¬q
b. -p → -(q v r) and (q → p) ^ (r → p)
c. ¬(p v (¬q ^ (r → p))) and ¬p ^ (¬r → q)
d. p+ q and (p ^ q) V (¬p ^ ¬q)
Transcribed Image Text:Part II: Proving logical equivalence using laws of propositional logic 4. Use the laws of propositional logic to prove that the following compound propositions are logically equivalent. a. (pA¬q) V ¬(p V q) and ¬q b. -p → -(q v r) and (q → p) ^ (r → p) c. ¬(p v (¬q ^ (r → p))) and ¬p ^ (¬r → q) d. p+ q and (p ^ q) V (¬p ^ ¬q)
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,