Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question

D part only plz.

Thankyou.

1. Idempotent laws
pvp = p
pap=p
2. Associative laws
(p v q) vr = p v (q v r)
(p^q)ar=p^ (q^r)
3. Commutative laws
pvq = qvp
pnq = qAp
4. Distributive laws
pv (qAr) (φν)^ φVr)
p^(q vr) = (p^q) v (p ^r)
5. Identity laws
pVF = p
pAT = p
6. Domination laws
pVT =T
pAF = F
7. Complement laws
pV-p = T
pA-p = F
8. Double negation law
p= ץרה
9. De Morgan's laws
¬(p v q) = -p A ¬q
¬(p Aq) = -p V ¬4
10. Absorption laws
pv (p^ q) = p
p^ (p v q) = p
11. Conditional identities
p- q = -p v q
p+ q = (p → q) ^ (q → p)
expand button
Transcribed Image Text:1. Idempotent laws pvp = p pap=p 2. Associative laws (p v q) vr = p v (q v r) (p^q)ar=p^ (q^r) 3. Commutative laws pvq = qvp pnq = qAp 4. Distributive laws pv (qAr) (φν)^ φVr) p^(q vr) = (p^q) v (p ^r) 5. Identity laws pVF = p pAT = p 6. Domination laws pVT =T pAF = F 7. Complement laws pV-p = T pA-p = F 8. Double negation law p= ץרה 9. De Morgan's laws ¬(p v q) = -p A ¬q ¬(p Aq) = -p V ¬4 10. Absorption laws pv (p^ q) = p p^ (p v q) = p 11. Conditional identities p- q = -p v q p+ q = (p → q) ^ (q → p)
Part II: Proving logical equivalence using laws of propositional logic
4.
Use the laws of propositional logic to prove that the following compound
propositions are logically equivalent.
a. (pA¬q) V ¬(p V q) and ¬q
b. -p → -(q v r) and (q → p) ^ (r → p)
c. ¬(p v (¬q ^ (r → p))) and ¬p ^ (¬r → q)
d. p+ q and (p ^ q) V (¬p ^ ¬q)
expand button
Transcribed Image Text:Part II: Proving logical equivalence using laws of propositional logic 4. Use the laws of propositional logic to prove that the following compound propositions are logically equivalent. a. (pA¬q) V ¬(p V q) and ¬q b. -p → -(q v r) and (q → p) ^ (r → p) c. ¬(p v (¬q ^ (r → p))) and ¬p ^ (¬r → q) d. p+ q and (p ^ q) V (¬p ^ ¬q)
Expert Solution
Check Mark
Step 1

Advanced Math homework question answer, step 1, image 1

Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,