Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Question
Please explain how to do this with answer available
Given the mathematical problem:

\[
\cos \theta = \frac{8}{9}, \quad \tan \theta < 0
\]

**Objective:** Find \(\sin \theta\).

**Explanation:**

1. **Identify the Quadrant:**
   - Since \(\cos \theta\) is positive and \(\tan \theta\) is negative, \(\theta\) must be in the fourth quadrant.

2. **Use the Pythagorean Identity:**
   \[
   \sin^2 \theta + \cos^2 \theta = 1
   \]
   Substitute \(\cos \theta = \frac{8}{9}\):
   \[
   \sin^2 \theta + \left(\frac{8}{9}\right)^2 = 1
   \]
   \[
   \sin^2 \theta + \frac{64}{81} = 1
   \]
   \[
   \sin^2 \theta = 1 - \frac{64}{81}
   \]
   \[
   \sin^2 \theta = \frac{81}{81} - \frac{64}{81}
   \]
   \[
   \sin^2 \theta = \frac{17}{81}
   \]

3. **Calculate \(\sin \theta\):**
   Since \(\theta\) is in the fourth quadrant, \(\sin \theta\) is negative:
   \[
   \sin \theta = -\sqrt{\frac{17}{81}}
   \]
   \[
   \sin \theta = -\frac{\sqrt{17}}{9}
   \]

Therefore, \(\sin \theta = -\frac{\sqrt{17}}{9}\).
expand button
Transcribed Image Text:Given the mathematical problem: \[ \cos \theta = \frac{8}{9}, \quad \tan \theta < 0 \] **Objective:** Find \(\sin \theta\). **Explanation:** 1. **Identify the Quadrant:** - Since \(\cos \theta\) is positive and \(\tan \theta\) is negative, \(\theta\) must be in the fourth quadrant. 2. **Use the Pythagorean Identity:** \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substitute \(\cos \theta = \frac{8}{9}\): \[ \sin^2 \theta + \left(\frac{8}{9}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{64}{81} = 1 \] \[ \sin^2 \theta = 1 - \frac{64}{81} \] \[ \sin^2 \theta = \frac{81}{81} - \frac{64}{81} \] \[ \sin^2 \theta = \frac{17}{81} \] 3. **Calculate \(\sin \theta\):** Since \(\theta\) is in the fourth quadrant, \(\sin \theta\) is negative: \[ \sin \theta = -\sqrt{\frac{17}{81}} \] \[ \sin \theta = -\frac{\sqrt{17}}{9} \] Therefore, \(\sin \theta = -\frac{\sqrt{17}}{9}\).
Expert Solution
Check Mark
Step 1

Calculus homework question answer, step 1, image 1

Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning