Consider the series of reactions to synthesize the alum (KAl(SO4 )2 · xH2O(s)) from the introduction. (a) Assuming an excess of the other reagents, from one mole of aluminum Al (s), how many moles of alum will be produced? (b) Assuming an excess of the other reagents, from one mole of potassium hydroxide KOH, how many moles of alum will be produced? (c) Assuming an excess of the other reagents, from one mole of sulfuric acid H2SO4 , how many moles of alum will be produced? (d) If you start the synthesis with 1.00 g of Al, 40.0 mL of 1.50 M KOH, and 20.0 mL of 9.00 M H2SO4 , which of the three will be the limiting reagent? (e) Assuming that the product is anhydrous (that there are no waters of hydration), calculate the theoretical yield of alum, in grams, based on the amounts of reagents in part
Consider the series of reactions to synthesize the alum (KAl(SO4 )2 · xH2O(s)) from the introduction.
(a) Assuming an excess of the other reagents, from one mole of aluminum Al (s), how many moles of alum will be produced?
(b) Assuming an excess of the other reagents, from one mole of potassium hydroxide KOH, how many moles of alum will be produced?
(c) Assuming an excess of the other reagents, from one mole of sulfuric acid H2SO4 , how many moles of alum will be produced?
(d) If you start the synthesis with 1.00 g of Al, 40.0 mL of 1.50 M KOH, and 20.0 mL of 9.00 M H2SO4 , which of the three will be the limiting reagent?
(e) Assuming that the product is anhydrous (that there are no waters of hydration), calculate the theoretical yield of alum, in grams, based on the amounts of reagents in part
(d). 3. Consider the nickel salt: (NH4 )2Ni(SO4 )2 ·y H2O (Ammonium Nickel Sulfate Hydrate), where y is the number of coordinated waters.
(a) Assuming that the product is anhydrous (y = 0), what is the theoretical yield of ammonium nickel sulfate from 1.500 g of Ni (s)?
(b) The actual yield of product was 9.640 g - obviously containing coordinated water. The product was then heated strongly until all the water had been driven off. The resulting anhydrous salt had mass 7.000 g. What is the value of y?
(c) Based on the mass of the anhydrous product (7.000 g), what is the % yield of the reaction?
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images