Consider the IVP x" + 3x + 2x = H(t− 1)H(3 – t), x(0) = x' (0) = 0, where H (t) is the Heaviside step function. Find the correct solution, expressed as a convolution, among the options below 0, Sile-t+r. -e-2t+2r] dr, Si le-t+r -e-2t+²T]dt, Ox(t) = f[e¹ + 2e¯²7]H(t − 7)H(7 − t + 1)dr 0, t = [0,3) t€ [1,3] t> 3 x(t) = x(t) = x(t) = 2[e-te-2t], 0 0, t = [0, 3) te [1, 3] t> 3 fedr, ₁³e-2(t-¹)dt, t = [0,3) te [1, 3] t> 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

B1.

 

Consider the IVP
x" + 3x + 2x = H(t − 1)H(3 – t),
x (0) = x' (0) = 0,
where H(t) is the Heaviside step function.
Find the correct solution, expressed as a convolution, among the options below
t = [0,3)
t = [1,3]
S₁³ [e-t+r_e-²¹+²+]dT,
е
t>3
· x(t) = fő [e¯¹ + 2e¯²¹]H(t − 7)H(7 − t + 1)dr
t = [0, 3)
t = [1,3]
t> 3
x(t) =
x(t) =
=
x(t) =
=
0,
Si le-t+re-2t+²+ ]dt,
е
0,
{
2[e-te-2t],
0,
fe-(-)]dr,
S₁³e-²(t-¹)dt,
t = [0,3)
te [1,3]
t> 3
Transcribed Image Text:Consider the IVP x" + 3x + 2x = H(t − 1)H(3 – t), x (0) = x' (0) = 0, where H(t) is the Heaviside step function. Find the correct solution, expressed as a convolution, among the options below t = [0,3) t = [1,3] S₁³ [e-t+r_e-²¹+²+]dT, е t>3 · x(t) = fő [e¯¹ + 2e¯²¹]H(t − 7)H(7 − t + 1)dr t = [0, 3) t = [1,3] t> 3 x(t) = x(t) = = x(t) = = 0, Si le-t+re-2t+²+ ]dt, е 0, { 2[e-te-2t], 0, fe-(-)]dr, S₁³e-²(t-¹)dt, t = [0,3) te [1,3] t> 3
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,