Consider the function if 0 < t < 10T if 10T ≤t. f(t) (sin(t-10T) a. Use the graph of this function to write it in terms of the Heaviside function. Use h(t - a) for the Heaviside function shifted a units horizontally. f(t) = b. Find the Laplace transform F(s) = L{f(t)}. F(s) = L{f(t)} = help (formulas) help (formulas)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Transcription for Educational Website:

---

### Consider the function

\[ 
f(t) = 
\begin{cases} 
0 & \text{if } 0 \leq t < 10\pi \\
\sin(t - 10\pi) & \text{if } 10\pi \leq t.
\end{cases} 
\]

#### a. Use the graph of this function to write it in terms of the Heaviside function. Use \( h(t - a) \) for the Heaviside function shifted \( a \) units horizontally.

\[ 
f(t) = \boxed{} \quad \text{help (formulas)}
\]

#### b. Find the Laplace transform \( F(s) = \mathcal{L} \{ f(t) \} \).

\[ 
F(s) = \mathcal{L} \{ f(t) \} = \boxed{} \quad \text{help (formulas)}
\]

#### Explanation:

- **Graph Interpretation**: The function \( f(t) \) starts as 0 for \( 0 \leq t < 10\pi \). At \( t = 10\pi \), the function transitions to a sine wave given by \( \sin(t - 10\pi) \).
  
- **Heaviside Function**: The Heaviside step function \( h(t - a) \) is used to shift the function horizontally by \( a \) units. It is defined as:
  \[
  h(t - a) =
  \begin{cases}
  0 & \text{if } t < a \\
  1 & \text{if } t \geq a
  \end{cases}
  \]

- **Laplace Transform**: The Laplace transform of a function \( f(t) \) is represented by \( \mathcal{L} \{ f(t) \} \) and transforms the function from the time domain into the s-domain.

For help with formulas, click on the provided links.

---

This transcription captures the mathematical content and instructions for solving the problem, suitable for an educational context.
Transcribed Image Text:### Transcription for Educational Website: --- ### Consider the function \[ f(t) = \begin{cases} 0 & \text{if } 0 \leq t < 10\pi \\ \sin(t - 10\pi) & \text{if } 10\pi \leq t. \end{cases} \] #### a. Use the graph of this function to write it in terms of the Heaviside function. Use \( h(t - a) \) for the Heaviside function shifted \( a \) units horizontally. \[ f(t) = \boxed{} \quad \text{help (formulas)} \] #### b. Find the Laplace transform \( F(s) = \mathcal{L} \{ f(t) \} \). \[ F(s) = \mathcal{L} \{ f(t) \} = \boxed{} \quad \text{help (formulas)} \] #### Explanation: - **Graph Interpretation**: The function \( f(t) \) starts as 0 for \( 0 \leq t < 10\pi \). At \( t = 10\pi \), the function transitions to a sine wave given by \( \sin(t - 10\pi) \). - **Heaviside Function**: The Heaviside step function \( h(t - a) \) is used to shift the function horizontally by \( a \) units. It is defined as: \[ h(t - a) = \begin{cases} 0 & \text{if } t < a \\ 1 & \text{if } t \geq a \end{cases} \] - **Laplace Transform**: The Laplace transform of a function \( f(t) \) is represented by \( \mathcal{L} \{ f(t) \} \) and transforms the function from the time domain into the s-domain. For help with formulas, click on the provided links. --- This transcription captures the mathematical content and instructions for solving the problem, suitable for an educational context.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,