Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
### Transcription for Educational Website:

---

### Consider the function

\[ 
f(t) = 
\begin{cases} 
0 & \text{if } 0 \leq t < 10\pi \\
\sin(t - 10\pi) & \text{if } 10\pi \leq t.
\end{cases} 
\]

#### a. Use the graph of this function to write it in terms of the Heaviside function. Use \( h(t - a) \) for the Heaviside function shifted \( a \) units horizontally.

\[ 
f(t) = \boxed{} \quad \text{help (formulas)}
\]

#### b. Find the Laplace transform \( F(s) = \mathcal{L} \{ f(t) \} \).

\[ 
F(s) = \mathcal{L} \{ f(t) \} = \boxed{} \quad \text{help (formulas)}
\]

#### Explanation:

- **Graph Interpretation**: The function \( f(t) \) starts as 0 for \( 0 \leq t < 10\pi \). At \( t = 10\pi \), the function transitions to a sine wave given by \( \sin(t - 10\pi) \).
  
- **Heaviside Function**: The Heaviside step function \( h(t - a) \) is used to shift the function horizontally by \( a \) units. It is defined as:
  \[
  h(t - a) =
  \begin{cases}
  0 & \text{if } t < a \\
  1 & \text{if } t \geq a
  \end{cases}
  \]

- **Laplace Transform**: The Laplace transform of a function \( f(t) \) is represented by \( \mathcal{L} \{ f(t) \} \) and transforms the function from the time domain into the s-domain.

For help with formulas, click on the provided links.

---

This transcription captures the mathematical content and instructions for solving the problem, suitable for an educational context.
expand button
Transcribed Image Text:### Transcription for Educational Website: --- ### Consider the function \[ f(t) = \begin{cases} 0 & \text{if } 0 \leq t < 10\pi \\ \sin(t - 10\pi) & \text{if } 10\pi \leq t. \end{cases} \] #### a. Use the graph of this function to write it in terms of the Heaviside function. Use \( h(t - a) \) for the Heaviside function shifted \( a \) units horizontally. \[ f(t) = \boxed{} \quad \text{help (formulas)} \] #### b. Find the Laplace transform \( F(s) = \mathcal{L} \{ f(t) \} \). \[ F(s) = \mathcal{L} \{ f(t) \} = \boxed{} \quad \text{help (formulas)} \] #### Explanation: - **Graph Interpretation**: The function \( f(t) \) starts as 0 for \( 0 \leq t < 10\pi \). At \( t = 10\pi \), the function transitions to a sine wave given by \( \sin(t - 10\pi) \). - **Heaviside Function**: The Heaviside step function \( h(t - a) \) is used to shift the function horizontally by \( a \) units. It is defined as: \[ h(t - a) = \begin{cases} 0 & \text{if } t < a \\ 1 & \text{if } t \geq a \end{cases} \] - **Laplace Transform**: The Laplace transform of a function \( f(t) \) is represented by \( \mathcal{L} \{ f(t) \} \) and transforms the function from the time domain into the s-domain. For help with formulas, click on the provided links. --- This transcription captures the mathematical content and instructions for solving the problem, suitable for an educational context.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,