Consider the following simplified bargaining game. Players 1 and 2 have preferences over two goods, x and y. Player 1 is endowed with one unit of good x and none of good y, while Player 2 is endowed with one unit of y and none of good x. Player i has utility function: min{xi, yi} where xi is i's consumption of x and yi his consumption of y. The "bargaining" works as follows. Each player simultaneously hands any (nonnegative) quantity of the good he possesses (up to his entire endowment) to the other player. (a) Write this as a game in normal form. (b) Find all pure strategy equilibria of this game. (c) Does this game have a dominant strategy equilibrium? If so, what is it? If not, why not? Please show all work. Note:- Do not provide handwritten solution. Maintain accuracy and quality in your answer. Take care of plagiarism. Answer completely. You will get up vote for sure.
Consider the following simplified bargaining game. Players 1 and 2 have preferences over two goods, x and y. Player 1 is endowed with one unit of good x and none of good y, while Player 2 is endowed with one unit of y and none of good x. Player i has utility function: min{xi, yi} where xi is i's consumption of x and yi his consumption of y. The "bargaining" works as follows. Each player simultaneously hands any (nonnegative) quantity of the good he possesses (up to his entire endowment) to the other player.
(a) Write this as a game in normal form.
(b) Find all pure strategy equilibria of this game.
(c) Does this game have a dominant strategy equilibrium? If so, what is it? If not, why not?
Please show all work.
Note:-
- Do not provide handwritten solution. Maintain accuracy and quality in your answer. Take care of plagiarism.
- Answer completely.
- You will get up vote for sure.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps