Question
Consider the following Hamiltonian
with constant m, n, and k, suppose that at t = 0 the system is at ø0
What is the state of the system at time (t)?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Similar questions
- Consider a system spin-1/2 system, denoted by A, interacting with another system spin-1/2 system, denoted by B, such that the state of the combined system is AB) a++ B|-+). Find (a) the density matrix PA for system A corresponding to this state and (b) obtain the formulas for (()).arrow_forwardThe Hamiltonian of an electron of mass m in a constant electric field E in one dimension can be written as Ĥ=+eEx where â and are the position and momentum operators, respectively. With initials conditions (t = 0) = 0 and p(t = 0) = 0, which one of the following gives (t) at time in the Heisenberg picture? You may use the commutator [â,p] = iħ. O a. O b. eEt2 2m O C. e Et O d. -eEt O e. eEt² m pt marrow_forwardThe dynamics of a particle moving one-dimensionally in a potential V (x) is governed by the Hamiltonian Ho = p²/2m + V (x), where p = is the momentuin operator. Let E, n = of Ho. Now consider a new Hamiltonian H given parameter. Given A, m and E, find the eigenvalues of H. -ih d/dx 1, 2, 3, ... , be the eigenvalues Ho + Ap/m, where A is a %3|arrow_forward
arrow_back_ios
arrow_forward_ios