Consider the following differential equation and initial value. y' = 2x - 3y + 1, y(1) = 8; y(1.2) Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6 Yn + 1 = Yn + hf(xn₁ Yn) First, use increment h = 0.1 1.1 x(1 y(1) x(1 y(1.2) y(1) Then, use increment h = 0.05. (Round your answers to four decimal places.) y(1.1) 5.9 y(1.2) 4.45 8 8 (3)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the following differential equation and initial value.
y' = 2x - 3y + 1, y(1) = 8; y(1.2)
Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6
First, use increment h = 0.1
x(
Yn + 1 = Yn + hf(xn¹ Yn)
1.1
x(
y(1)
y(1.2)
y(1)
Then, use increment h = 0.05. (Round your answers to four decimal places.)
y(1.1)
5.9
y(1.2)
4.45
8
8
(3)
Transcribed Image Text:Consider the following differential equation and initial value. y' = 2x - 3y + 1, y(1) = 8; y(1.2) Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6 First, use increment h = 0.1 x( Yn + 1 = Yn + hf(xn¹ Yn) 1.1 x( y(1) y(1.2) y(1) Then, use increment h = 0.05. (Round your answers to four decimal places.) y(1.1) 5.9 y(1.2) 4.45 8 8 (3)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,