Consider the differential equation: xy" – y' 18y (1) Making the changes of variable x= e', y= u(t)e-2t in the differential equation (1), the differential equation u is obtained, depending on t, given by: u" - 6u' - 10u = 0. The solution of the differential equation (1), depending on the parameter t, with constant cl and c2, is given by: et S2(t) %3D O a) y(t) et 19 %3D S¤(t) et %3D Ob) y(t) e* (c1 cos(t/19) + c2 sen(tv/19)) S2(t) c) y(t) et '+cze tv19) C2e et d) Į #(t) y(t) e' (c, cos(tv/19) + C2 sen(tv/19))

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Hey please reply as soon as posible.

Consider the differential equation:
xy" – y'
18y
(1)
Making the changes of variable x= e', y= u(t)e-2t in the differential equation
(1), the differential equation u is obtained, depending on t, given by:
u" - 6u' - 10u = 0.
The solution of the differential equation (1), depending on the parameter t, with
constant cl and c2, is given by:
¤(t)
a)
y(t)
et
%3D
et
%3D
Ob)
Į #(t)
et
l y(t)
est
e (c, cos(tv19) +c2 sen(tv/19))
%3D
S2(t)
et
c)
y(t)
+ cze
tv19
C2e
O d)
S ¤(t)
et
y(t)
e (c, cos(tv/19) + c2 sen(t/19))
Transcribed Image Text:Consider the differential equation: xy" – y' 18y (1) Making the changes of variable x= e', y= u(t)e-2t in the differential equation (1), the differential equation u is obtained, depending on t, given by: u" - 6u' - 10u = 0. The solution of the differential equation (1), depending on the parameter t, with constant cl and c2, is given by: ¤(t) a) y(t) et %3D et %3D Ob) Į #(t) et l y(t) est e (c, cos(tv19) +c2 sen(tv/19)) %3D S2(t) et c) y(t) + cze tv19 C2e O d) S ¤(t) et y(t) e (c, cos(tv/19) + c2 sen(t/19))
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,