Consider the DE d²y dy - 18- +81y = x dx² dx which is linear with constant coefficients. First we will work on solving the corresponding homogeneous equation. The auxiliary equation (using m as your variable) is = 0 which has root Because this is a repeated root, we don't have much choice but to use the exponential function corresponding to this root: Y2 = to do reduction of order. Then (using the prime notation for the derivatives) = 3½ = So, plugging y2 into the left side of the differential equation, and reducing, we get y — 18, + 81y2 = So now our equation is eu" = x. To solve for u we need only integrate ace first constant of integration and b as the second we get 9x twice, using a as our u = Therefore y2 = , the general solution. We knew from the beginning that ex was a solution. We have worked out is that re⁹ is another solution to the homogeneous equation, which is generally the case when we have multiple roots. Then 2+9x is the particular solution to the nonhomogeneous equation, and the general solution we derived is pieced together using superposition. 729
Consider the DE d²y dy - 18- +81y = x dx² dx which is linear with constant coefficients. First we will work on solving the corresponding homogeneous equation. The auxiliary equation (using m as your variable) is = 0 which has root Because this is a repeated root, we don't have much choice but to use the exponential function corresponding to this root: Y2 = to do reduction of order. Then (using the prime notation for the derivatives) = 3½ = So, plugging y2 into the left side of the differential equation, and reducing, we get y — 18, + 81y2 = So now our equation is eu" = x. To solve for u we need only integrate ace first constant of integration and b as the second we get 9x twice, using a as our u = Therefore y2 = , the general solution. We knew from the beginning that ex was a solution. We have worked out is that re⁹ is another solution to the homogeneous equation, which is generally the case when we have multiple roots. Then 2+9x is the particular solution to the nonhomogeneous equation, and the general solution we derived is pieced together using superposition. 729
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 6 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,