Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Topic Video
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Step 1: Determine the given variables:
VIEW Step 2: Write the incompressible continuity equation in cylindrical coordinates:
VIEW Step 3: Take the x-component of incompressible Navier-stokes equation:
VIEW Step 4: Find the volume flow rate through the pipe:
VIEW Step 5: Find the average axial velocity through the pipe:
VIEW Solution
VIEW Trending nowThis is a popular solution!
Step by stepSolved in 6 steps with 12 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- find:v Maximum speed Average speed Volumetric flow Show that the speed profile provided satisfies the continuity equation in its differential format Incompressible steady flow in the inlet between parallel plates is uniform, Vo = 8 cm/s, while downstream, the flow develops into the parabolic profile = az(zo-z), where a is a x constant. What is the maximum value of v,? Voarrow_forwardIn an experiment to determine the force acting on an oval-shaped body, a model is mounted in the test section of a wind tunnel. The test section itself has rectangular cross section with height 2h and width l (into the page). The model spans the entire width of the test section. The model is subject to a steady, uniform, incompressible flow of velocity V₁. The pressure gauge indicates a pressure difference (Ap) between the test section exit (location 2) and the test section entrance (location 1). The velocity profile downstream of the model is shown in the figure. Use the control volume shown. Find the force acting on the model in terms of given quantities V₁, h, l, Ap, and density, p. Ap V ALarrow_forwardNeed help on both parts pleasearrow_forward
- Given the vector equation below for velocity of a given fluid: V=(0.5+1.2x)i + (-2.0-1.2y)j, derive an analytical expression for the flow streamlinesarrow_forwardPlease answer botharrow_forwardP1 A thin layer of water flows down a plate inclined to the horizontal with an angle a = 15° in the shown coordinate system. If the thickness of the water layer is a=0.5 mm, assuming that the flow is laminar and incompressible, (water density p = 1000 kg/m³viscosity µ = 0.001 Pa.s and acceleration of gravity g = 9.81 m/s²) and an air flow shears the layer in a direction opposite to its flow with a shear stress of 1 N /m². Solve the Navier-Stokes equation: air water (a) to find the value of the maximum water velocity in m/s to three decimal points, Answer: (b)and to find the value of water velocity at the layer's surface in m/s to three decimal points, Answer:arrow_forward
- When a valve is opened, a certain fluid flows through the choke duct or valve (see figure), according to the relationship: V= V (1 + x/L) i Determine a) If the flow is stationary or transient. b) The acceleration (ax) of the fluid applying Euler's approach. c) The position of the particle as a function of time at x = 0 and t = 0. d) Determine the acceleration of the particle as a function of time.arrow_forwarda. Given the velocity field u=(u,v,w) in Cartesian coordinates with u=2x+y, v=2zt, w=0. i. Find the equations of the corresponding streamlines (Eulerian concept) ii. Find the equations of the corresponding particle paths, i.e., the pathlines (Lagrangian concept). b. Show that the Vu=0 everywhere implies that volumes are conserved, i.e., the volume of red particles at t-0 is the same as at t=t. Hint: Write out what you must prove and use the theorems to get there.arrow_forward4. Consider the steady, two-dimensional velocity field given by: u = 2xy-y²; v=x-y². Show that it is a possible 2d incompressible flow. Find the component of acceleration in x direction of a fluid particle at point (x, y) = (1,2)arrow_forward
- g Figure 3: Fluid flows between two infinite plates A viscous, incompressible steady fluid flows between two infinite, vertical, parallel plates distance h apart, as shown in Figure 3. Use the given coordinates system and assume that the flow is laminar, fully developed (30), and planar (w = 0,0). Assume that pressure and gravity are not negligible. (a) Simplify the contnuity equation and show that v = 0. (b) Using the y-momentum equation show that pressure is a function of a only. (c) Find the velocity distribution u(y) in terms of u, g, h, p and d (d) Find the wall shear stress of the flow.arrow_forward(2) Consider the following fluid velocity fields: F(x,y) = (x,y), F(x,y)=(-x, y), F(x,y) = (y, 0). (a) Plot the three fields as glyphs. Which of these vector fields represent an expansion, a compression and a shear flow? (b) Calculate the divergence of the three fields V F. Can you relate the value of the divergence with the nature (compression, expansion or shear of the flow)? (c) Calculate the circulation V x F and relate it with the nature of the flow.arrow_forwardThe velocity components in the x and y directions are given by 3 u = Axy3 - x2y, v = xy2 -- The value of a for a possible flow field involving an incompressible fluid isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY