Question

Transcribed Image Text:Consider a shape with
Radius = 3.5cm
Total charge 0.66µC
Electric flux in the surface (the round surface of a hemisphere) = 9.8 X 104N.m²/C
What is the flux on the flat surface?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps

Knowledge Booster
Similar questions
- A flat surface of area 3.10 m² is rotated in a uniform electric field of magnitude E = 6.65 x 105 N/C. (a) Determine the electric flux through this area when the electric field is perpendicular to the surface. N. m²/c (b) Determine the electric flux through this area when the electric field is parallel to the surface. N. m²/carrow_forwardThe figure below shows a uniform electric field of magnitude E = 420 N/C making an angle of o = 66.5° with a flat surface of area A = 3.20 m2. What is the magnitude of the electric flux through this surface (in N · m2/C)? E N. m2/carrow_forwardA uniformly charged disk of radius R=25 cm carries a total charge of Q=2 μC. R P 1 Find the magnitude of the electric field E created by the disk at the point P located at distance 40 cm from the center of the disk. E = [N/C] 2. What is the direction of the electric field E created by the disk at point P. Direction: 3. Write the expression of the electric filed E created by the disk at point P. Ē =< [N/C] 4. Find the magnitude of the electric field E created by the disk at the point P located at distance 8 m from thearrow_forward
- Calculate the absolute value of the electric flux for the following situations (In all case provide your answer in N m2/C): a. A constant electric field of magnitude 300 N/C at a 30 degrees angle with respect to the flat rectangular surface shown in the Figure above. b. A uniform electric field E = (70 i + 90 k) N/C through a 4 cm ×5 cm in the x-y plane. c. A uniform electric field E = (−350 i + 350 j + 350 k) N/C through a disk of radius 3 cm in the x-z plane.arrow_forwardA hollow sphere of radius .05m contains a negative charge sitting right at its center. (The sphere itself is not charged.) The electric field everywhere on the surface of the sphere has the magnitude 3.0*10^-4 N/C. Draw the sphere and show the electric field vectors on your drawing. What is the total electric flux through the surface of the sphere?arrow_forwardA point charge is located at the origin. Centered along the x axis is a cylindrical closed surface of radius 10 cm with one end surface located at x = 2 m and the other end surface located at x = 2.5 m. If the magnitude of the electric flux through the surface at x = 2 m is 4 N . m2 /C, what is the magnitude of the electric flux through the surface at x = 2.5 m? Select one: a. 1.8 N . m2 /C b. 2.56 N . m2 /C c. 1.0 N . m2 /C d. 4.0 N . m2 /C e. 5.0 N . m2 /Carrow_forward
- A closed surface is in the form of a block with length c, width b and height a. In this room there is an electric field parallel to the x axis with magnitude: E = A + Bx, where A and B are constants. a. Determine the total flux over the closed surface. b. Determine the amount of charge covered by the payload. N x = a ko-arrow_forwardPls Asaparrow_forwardA cylinder has a volume of 5.2 cm^3 and a charge density of 6.1 μC/cm^3, and is enclosed in a spherical surface with a radius of 17.5 cm. What is the total charge on the cylinder? What is the total electric flux through the surface of the sphere?arrow_forward
arrow_back_ios
arrow_forward_ios