Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 8000 kPa and 480oC and expands to 700 kPa. The steam is reheated to 440oC before entering the second turbine, where it expands to the condenser pressure of 8 kPa. Steam is extracted from the first turbine at 2000 kPa and fed to the closed feedwater heater.  The feedwater leaves the closed heater at 205oC and 8000 kPa and enters the boiler to complete the cycle. The condensate from the closed feedwater heater is throttled into the open feedwater heater. Steam extracted from the second turbine at 300 kPa is also fed into the open feedwater heater, which operates at 300 kPa. The stream exiting the open feedwater heater is saturated liquid at 300 kPa. The net power output of the cycle is 100 MW. If the working fluid experiences no irreversibilities as it passes through the turbines and pumps, determine: (a) mass flowrate of the fluid entering the boiler in kg/h (b) the heat transfer rate in the boiler in kJ/kg (c) thermal efficiency of the power plant

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 8000 kPa and 480oC and expands to 700 kPa. The steam is reheated to 440oC before entering the second turbine, where it expands to the condenser pressure of 8 kPa. Steam is extracted from the first turbine at 2000 kPa and fed to the closed feedwater heater.  The feedwater leaves the closed heater at 205oC and 8000 kPa and enters the boiler to complete the cycle. The condensate from the closed feedwater heater is throttled into the open feedwater heater. Steam extracted from the second turbine at 300 kPa is also fed into the open feedwater heater, which operates at 300 kPa. The stream exiting the open feedwater heater is saturated liquid at 300 kPa. The net power output of the cycle is 100 MW. If the working fluid experiences no irreversibilities as it passes through the turbines and pumps, determine:

(a) mass flowrate of the fluid entering the boiler in kg/h
(b) the heat transfer rate in the boiler in kJ/kg
(c) thermal efficiency of the power plant

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 35 images

Blurred answer
Knowledge Booster
Power Plant Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY