Consider a one-period model in which the representative consumer maximizes the utility U(C,L)= InC + y L, where C is private consumption, L is leisure and where y is a utility parameter. The consumer works N hours, gets paid an hourly wage rate w, receives dividend income from the firm and pays lump-sum taxes T. All income is spent on private consumption goods. The time endowment constraint is N+L=h. The representative firm produces goods using the technology of production ZN and pays workers' compensation of wN. In equilibrium, labor supplied by the consumer and labor demanded by the firm are equal, and denoted by N. The goods market also clears. Answer parts a) and b) below. a). Let y = 0.04, T = 36, z = 2, h = 100. Solve for a competitive equilibrium in this model. Round your answers to 2 decimal places. Leisure equals Labor equals Private consumption equals b). Now suppose that the utility parameter y increases. This means that O A. consumption C will decrease and leisure L will increase O B. consumption C will increase and leisure L will decrease

Microeconomic Theory
12th Edition
ISBN:9781337517942
Author:NICHOLSON
Publisher:NICHOLSON
Chapter4: Utility Maximization And Choice
Section: Chapter Questions
Problem 4.14P
icon
Related questions
Question

Solve all this question......you will not solve all questions then I will give you down?? upvote...

Consider a one-period model in which the representative consumer maximizes the utility U(C,L) = InC + y •L, where C
is private consumption, L is leisure and where y is a utility parameter. The consumer works N hours, gets paid an
hourly wage rate w, receives dividend income from the firm and pays lump-sum taxes T. All income is spent on
private consumption goods. The time endowment constraint is N+L=h. The representative firm produces goods using
the technology of production ZN and pays workers' compensation of wN. In equilibrium, labor supplied by the
consumer and labor demanded by the firm are equal, and denoted by N. The goods market also clears.
Answer parts a) and b) below.
a). Let y = 0.04, T = 36, z = 2, h = 100. Solve for a competitive equilibrium in this model. Round your answers to 2
decimal places.
Leisure equals
Labor equals
Private consumption equals
b). Now suppose that the utility parameter y increases. This means that
A. consumption C will decrease and leisure L will increase
B. consumption C will increase and leisure L will decrease
Transcribed Image Text:Consider a one-period model in which the representative consumer maximizes the utility U(C,L) = InC + y •L, where C is private consumption, L is leisure and where y is a utility parameter. The consumer works N hours, gets paid an hourly wage rate w, receives dividend income from the firm and pays lump-sum taxes T. All income is spent on private consumption goods. The time endowment constraint is N+L=h. The representative firm produces goods using the technology of production ZN and pays workers' compensation of wN. In equilibrium, labor supplied by the consumer and labor demanded by the firm are equal, and denoted by N. The goods market also clears. Answer parts a) and b) below. a). Let y = 0.04, T = 36, z = 2, h = 100. Solve for a competitive equilibrium in this model. Round your answers to 2 decimal places. Leisure equals Labor equals Private consumption equals b). Now suppose that the utility parameter y increases. This means that A. consumption C will decrease and leisure L will increase B. consumption C will increase and leisure L will decrease
Expert Solution
steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Knowledge Booster
Budget Constraint
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, economics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Microeconomic Theory
Microeconomic Theory
Economics
ISBN:
9781337517942
Author:
NICHOLSON
Publisher:
Cengage