
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Consider 0.65 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 290 K. Determine: (a) the volume of each tank, in m³. (b) the final pressure, in bar. (c) the magnitude of the heat transfer to or from the gases during the process, in kJ. (d) the entropy change of each gas and of the overall system, in kJ/K.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Similar questions
- Consider 0.65 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO, at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 280 K. Determine: (a) the volume of cach tank, in m?. (b) the final pressure, in bar. (c) the magnitude of the heat transfer to or from the gases during the process, in k). (d) the entropy change of each gas and of the overall system, in kJ/K. Step 1 Your answer is correct. Determine the volume of each tank, in m. 57 V1,co, .17 Step 2 * Your answer is incorrect. Determine the final pressure, in bar. P2 B8 bararrow_forwardConsider 0.75 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 280 K.Determine:(a) the final pressure, in bar.(b) the magnitude of the heat transfer to or from the gases during the process, in kJ.(c) the entropy change of each gas and of the overall system, in kJ/K.arrow_forwardDear expert solve correctlyarrow_forward
- A rigid, well-insulated tank contains a two-phase mixture of ammonia with 0.0022 ft3 of saturated liquid and 1.5 ft3 of saturated vapor, initially at p₁ = 40 lbf/in². A paddle wheel stirs the mixture until only saturated vapor at higher pressure, p2, remains in the tank. Kinetic and potential energy effects are negligible. Determine the pressure p2, in lbf/in², and the amount of energy transfer by work, in Btu.arrow_forwardA rigid, well-insulated tank contains a two-phase mixture of ammonia with 0.0022 ft³ of saturated liquid and 1.5 ft3 of saturated vapor, initially at p₁ = 70 lb/in². A paddle wheel stirs the mixture until only saturated vapor at higher pressure, p2, remains in the tank. Kinetic and potential energy effects are negligible. Determine the pressure p2, in lb/in², and the amount of energy transfer by work, in Btu. Step 1 * Your answer is incorrect. Determine p2, in lb/in². P2= i81.56 lb/in²arrow_forwardA rigid, well-insulated tank contains a two-phase mixture of ammonia with 0.0022 ft3 of saturated liquid and 1.5 ft3 of saturated vapor, initially at p1 = 60 lbf/in2. A paddle wheel stirs the mixture until only saturated vapor at higher pressure, p2, remains in the tank. Kinetic and potential energy effects are negligible.Determine the pressure p2, in lbf/in2, and the amount of energy transfer by work, in Btu.arrow_forward
- 4. A two-phase, liquid-vapor mixture of H,O, initially a kPa, is contained in a piston – cylinder assembly, as shown in Fig 4. The mass of the piston is 10 kg, and its diameter is 15 cm. The pressure of the surroundings is 100 kPa. As the water is heated, the pressure inside the cylinder remains constant until the piston hits the stops. Heat transfer to the water continues at constant volume until the Water, initially at X= 30%, p= 100 kPa- Piston D= 15 cm m- 10 kg Pen= 100 kPa pressure is 150 kPa. Friction between the piston and the cylinder wall and kinetic and potential energy effects are negligible. Present the process on the P-v diagram. For the overall process of the water, determine the work and heat transfer, each in kJ. 2 cm- -8 cmarrow_forwardOne kilogram of air, initially at 5 bar, 350 K, and 3 kg of carbon dioxide (CO2), initially at 2 bar, 450 K, are confined to opposite sides of a rigid, well-insulated container. The partition is free to move and allows conduction from one gas to the other without energy storage in the partition itself. The air and carbon dioxide each behave as ideal gases. Determine the final equilibrium temperature, in K, and the final pressure, in bar, assuming constant specific heats.arrow_forwardPropane is contained in a closed, rigid container with a volume of 10 m^3. Initially the pressure and temperture of the propane are 8 bar and 80 ^0C, respectively. The temperture drops as a result of energy rejected by heat transfer to the surroundings. Determine the temperture at which condensation first occurs, in ^0C, and the fraction of the total mass that has condensed when the pressure reaches 5 bar. What is the volume, in m^3, occupied by saturated liquid at the final state?arrow_forward
- A 1-m³ tank holds a two-phase liquid-vapor mixture of carbon dioxide at -17°C. The quality of the mixture is 60.0%. For saturated carbon dioxide at -17°C, v=0.9827 x 103 m³/kg and v₂ = 1.756 x 10² m³/kg. Determine the masses of saturated liquid and saturated vapor, each in kg. What is the percent of the total volume occupied by saturated liquid? Part A Determine the masses of saturated liquid and saturated vapor, each in kg. mg" mf = i i Save for Later kg kg Attempts: 0 of 5 used Submit Answer Part B The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forwardTwo kg of oxygen fills the cylinder of a piston–cylinder assembly. The initial volume and pressure are 2 m3 and 1 bar, respectively. Heat transfer to the oxygen occurs at constant pressure until the volume is doubled. Determine the heat transfer for the process, in kJ, assuming the specific heat ratio is constant, k = 1.35. Kinetic and potential energy effects can be ignored.arrow_forwardProblem 3.091 SI Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 = 280 K to p2 = 8 bar. The initial volume is 0.2 m3. The process is described by pV1.25 = constant.Assuming ideal gas behavior and neglecting kinetic and potential energy effects, determine the work and heat transfer for the process, each in kJ, using constant specific heats evaluated at 300 K, and data from Table A-23.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY