
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
![**Problem: Compute the exact value**
\[ \int_{2}^{\infty} 2^{-x} \, dx \]
There are no graphs or diagrams associated with this problem. The goal is to compute the exact value of the improper integral from 2 to infinity of the function \(2^{-x}\).
### Solution Outline:
1. **Identify the Integrand**: The integrand is \(2^{-x}\), which can be written as \(e^{-x \ln(2)}\) using the change of base formula.
2. **Perform the Integration**:
\[
\int 2^{-x} \, dx = \int e^{-x \ln(2)} \, dx
\]
Let \(k = \ln(2)\), then the integral becomes:
\[
\int e^{-kx} \, dx
\]
3. **Integrate the Exponential Function**:
The integral of \(e^{-kx}\) with respect to \(x\) is:
\[
\int e^{-kx} \, dx = -\frac{1}{k} e^{-kx} + C
\]
Substituting \(k = \ln(2)\):
\[
\int 2^{-x} \, dx = -\frac{1}{\ln(2)} 2^{-x} + C
\]
4. **Evaluate the Definite Integral**:
Evaluate the definite integral from 2 to infinity:
\[
\left[ -\frac{1}{\ln(2)} 2^{-x} \right]_{2}^{\infty}
\]
5. **Evaluate the Limits**:
\[
= \left( \lim_{{t \to \infty}} \left( -\frac{1}{\ln(2)} 2^{-t} \right) \right) - \left( -\frac{1}{\ln(2)} 2^{-2} \right)
\]
As \(t \to \infty\), \(2^{-t} \to 0\):
\[
= 0 - \left( -\frac{1}{\ln(2)} 2^{-2} \right)
\]
Simplify the expression:
\[](https://content.bartleby.com/qna-images/question/6c8732dd-627e-495c-a245-47d9f524edaa/27afcf13-df07-4143-a23a-f149bba20805/ni15c4_thumbnail.jpeg)
Transcribed Image Text:**Problem: Compute the exact value**
\[ \int_{2}^{\infty} 2^{-x} \, dx \]
There are no graphs or diagrams associated with this problem. The goal is to compute the exact value of the improper integral from 2 to infinity of the function \(2^{-x}\).
### Solution Outline:
1. **Identify the Integrand**: The integrand is \(2^{-x}\), which can be written as \(e^{-x \ln(2)}\) using the change of base formula.
2. **Perform the Integration**:
\[
\int 2^{-x} \, dx = \int e^{-x \ln(2)} \, dx
\]
Let \(k = \ln(2)\), then the integral becomes:
\[
\int e^{-kx} \, dx
\]
3. **Integrate the Exponential Function**:
The integral of \(e^{-kx}\) with respect to \(x\) is:
\[
\int e^{-kx} \, dx = -\frac{1}{k} e^{-kx} + C
\]
Substituting \(k = \ln(2)\):
\[
\int 2^{-x} \, dx = -\frac{1}{\ln(2)} 2^{-x} + C
\]
4. **Evaluate the Definite Integral**:
Evaluate the definite integral from 2 to infinity:
\[
\left[ -\frac{1}{\ln(2)} 2^{-x} \right]_{2}^{\infty}
\]
5. **Evaluate the Limits**:
\[
= \left( \lim_{{t \to \infty}} \left( -\frac{1}{\ln(2)} 2^{-t} \right) \right) - \left( -\frac{1}{\ln(2)} 2^{-2} \right)
\]
As \(t \to \infty\), \(2^{-t} \to 0\):
\[
= 0 - \left( -\frac{1}{\ln(2)} 2^{-2} \right)
\]
Simplify the expression:
\[
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning