Components of the TIM complexes, the multi- subunit protein translocators in the mitochondrial inner membrane, are much less abundant than those of the TOM complex. They were initially identified using a genetic trick. The yeast Ura3 gene, whose product is an enzyme that is normally located in the cytosol where it is essential for synthesis of uracil, was modified so that the protein carried an import signal for the mitochondrial matrix. A population of cells carrying the modified Ura3 gene in place of the normal gene was then grown in the absence of uracil. Most cells died, but the rare cells that grew were shown to be defective for mitochondrial import. Explain how this selection identifies cells with defects in compo- nents required for import into the mitochondrial matrix. Why don’t normal cells with the modified Ura3 gene grow in the absence of uracil? Why do cells that are defective for mitochondrial import grow in the absence of uracil?Components of the TIM complexes, the multi- subunit protein translocators in the mitochondrial inner membrane, are much less abundant than those of the TOM complex. They were initially identified using a genetic trick. The yeast Ura3 gene, whose product is an enzyme that is normally located in the cytosol where it is essential for synthesis of uracil, was modified so that the protein carried an import signal for the mitochondrial matrix. A population of cells carrying the modified Ura3 gene in place of the normal gene was then grown in the absence of uracil. Most cells died, but the rare cells that grew were shown to be defective for mitochondrial import. Explain how this selection identifies cells with defects in compo- nents required for import into the mitochondrial matrix. Why don’t normal cells with the modified Ura3 gene grow in the absence of uracil? Why do cells that are defective for mitochondrial import grow in the absence of uracil?
Components of the TIM complexes, the multi- subunit protein translocators in the mitochondrial inner membrane, are much less abundant than those of the TOM complex. They were initially identified using a genetic trick. The yeast Ura3 gene, whose product is an enzyme that is normally located in the cytosol where it is essential for synthesis of uracil, was modified so that the protein carried an import signal for the mitochondrial matrix. A population of cells carrying the modified Ura3 gene in place of the normal gene was then grown in the absence of uracil. Most cells died, but the rare cells that grew were shown to be defective for mitochondrial import. Explain how this selection identifies cells with defects in compo- nents required for import into the mitochondrial matrix. Why don’t normal cells with the modified Ura3 gene grow in the absence of uracil? Why do cells that are defective for mitochondrial import grow in the absence of uracil?Components of the TIM complexes, the multi- subunit protein translocators in the mitochondrial inner membrane, are much less abundant than those of the TOM complex. They were initially identified using a genetic trick. The yeast Ura3 gene, whose product is an enzyme that is normally located in the cytosol where it is essential for synthesis of uracil, was modified so that the protein carried an import signal for the mitochondrial matrix. A population of cells carrying the modified Ura3 gene in place of the normal gene was then grown in the absence of uracil. Most cells died, but the rare cells that grew were shown to be defective for mitochondrial import. Explain how this selection identifies cells with defects in compo- nents required for import into the mitochondrial matrix. Why don’t normal cells with the modified Ura3 gene grow in the absence of uracil? Why do cells that are defective for mitochondrial import grow in the absence of uracil?
Step by step
Solved in 2 steps